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ABSTRACT 
 

Centers for Disease Control and Prevention (CDC) estimate that more than 11.2 million 

people require critical and emergency care in the United States per year [1]. Optimizing and 

improving patient morbidity and mortality outcomes are the primary objectives of monitoring in 

critical and emergency care.  Patients in need of critical or emergency care in general are at a risk 

of single or multiple organ failures occurring due to a traumatic injury, a surgical event, or an 

underlying pathology that results in severe patient hemodynamic instability. Hence, continuous 

monitoring of fundamental cardiovascular hemodynamic parameters, such as heart rate, 

respiratory rate, blood pressure, blood oxygenation and core temperature, is essential to 

accomplish diagnostics in critical and emergency care.  Today’s standard of care measures these 

critical parameters using multiple monitoring technologies.  

Though it is possible to measure all the fundamental cardiovascular hemodynamic 

parameters using the blood flow dynamics, its use is currently only limited to measuring 

continuous blood pressure. No other comparable studies in the literature were successful in 

quantifying other critical parameters from the blood flow dynamics for a few reasons. First, the 

blood flow dynamics exhibit a complicated and sensitive dynamic pressure field. Existing blood 

flow based data acquisition systems are unable to detect these sensitive variations in the pressure 

field. Further, the pressure field is also influenced by the presence of background acoustic 

interference, resulting in a noisy pressure profile. Thus in order to extract critical parameters from
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this dynamic pressure field with fidelity, there is need for an integrated framework that is 

composed of a highly sensitive data acquisition system and advanced signal processing. In 

addition, existing state-of-the-art technologies require expensive instrumentation and complex 

infrastructure. The information sensed using these multiple monitoring technologies is integrated 

and visualized using a clinical information system. This process of integration and visualization 

creates the need for functional interoperability within the multiple monitoring technologies. 

Limited functional interoperability not only results in diagnostic errors but also their complexity 

makes it impossible to use such technologies to accomplish monitoring in low resource settings.  

These multiple monitoring technologies are neither portable nor scalable, in addition to inducing 

extreme patient discomfort. For these reasons, existing monitoring technologies do not efficiently 

meet the monitoring and diagnostic requirements of critical and emergency care.   

In order to address the challenges presented by existing blood flow based data acquisition 

systems and other monitoring systems, a point of care monitoring device was developed to provide 

multiple critical parameters by means of uniquely measuring a physiological process. To 

demonstrate the usability of this novel catheter multiscope, a feasibility study was performed using 

an animal model. The corresponding results are presented in this dissertation.  The developed 

measurement system first acquires the dynamics of blood flow through a minimally invasive 

catheter. Then, a signal processing framework is developed to characterize the blood flow 

dynamics and to provide critical parameters such as heart rate, respiratory rate, and blood pressure.  

The framework used to extract the physiological data corresponding to the acoustic field of the 

blood flow consisted of a noise cancellation technique and a wavelet based source separation. The 

preliminary results of the acoustic field of the blood flow revealed the presence of acoustic heart 

and respiratory pulses.  A unique and novel framework was also developed to extract continuous 
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blood pressure from the pressure field of the blood flow. Finally, the computed heart and 

respiratory rates, systolic and diastolic pressures were benchmarked with actual values measured 

using conventional devices to validate the measurements of the catheter multiscope.  

In summary, the results of the feasibility study showed that the novel catheter multiscope 

can provide critical parameters such as heart rate, respiratory rate and blood pressure with clinical 

accuracy.  In addition, this dissertation also highlights the diagnostic potential of the developed 

catheter multiscope by presenting preliminary results of proof of concept studies performed for 

application case studies such as sinus rhythm pattern recognition and fetal monitoring through 

phonocardiography. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 

Optimizing and improving patient morbidity and mortality outcomes are the primary 

objectives of monitoring in critical and emergency care.  Patients in the need of critical or 

emergency care in general are at a risk of single or multiple organ failure occurring due to a 

traumatic injury, surgical event or an underlying pathology. This risk causes the patients to 

experience a hemodynamic instability. This hemodynamic instability further leads to ineffective 

circulating volume, cardiac function and/or vascular tone, ultimately resulting in an inadequate 

tissue oxygen delivery, end organ perfusion and death. Today’s standard of care manages these 

instabilities by continuously monitoring various cardiovascular hemodynamic parameters (critical 

parameters) and thereby manipulating the macro and micro-circulation to improve tissue oxygen 

delivery [2] [3] [4]. Minimum standards of monitoring in critical and emergency care are specified 

by the college of intensive care medicine and they include continuous monitoring of fundamental 

critical parameters such as heart rate, respiratory rate, blood pressure (arterial and venous), blood 

oxygenation and core temperature [5].  From a systemic view, critical care monitoring can be 

summarized as a two stage process.  At the first stage, multiple sensors acquire vital bio-signals 

corresponding to various physiological processes of the patient. At the second stage, a clinical 

information system is used to integrate and visualize the data from the multiple sensors used in 

first stage.  State-of-the-art sensing technologies as shown in Figure 2.1, traditionally determine 
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critical parameters from the vital bio-signals, i.e., heart rate is determined either from 

Electrocardiogram (ECG) [6] or Photoplethysmograph (PPG) using 12 lead electrodes or a 

fingertip pulse oximetry; respiratory rate is determined either from respiratory flow or 

respiratory/lung sounds using a capnography or plethysmograph or a pneumatograph [7]; 

continuous blood pressure is determined by coupling the vascular pressures to an intravascular or 

extravascular pressure sensor through an arterial and/or venous catheter [8] [9]; blood oxygenation 

is determined from pulse oximetry [10] and core body temperature is measured using either a 

pulmonary arterial catheter or a urinary Foley catheter [11].   

 
Figure 1.1: Multiple Vital Bio-signal Monitoring in Critical and Emergency Care. Image 

Adapted From [12]. 

1.2 Existing Challenges in Critical and Emergency Care Monitoring 

Though it is possible to measure all the fundamental cardiovascular hemodynamic 

parameters such as heart rate, respiratory rate, blood oxygenation and core temperature from the 

blood flow, its use is currently only limited to measuring continuous blood pressure. No other 

comparable studies in the literature were successful in quantifying multiple critical parameters 
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from the blood flow dynamics for a few reasons. First, the blood flow dynamics exhibit a 

complicated and sensitive dynamic pressure field. Second, existing blood flow based data 

acquisition systems are unable to detect these sensitive variations within the dynamic pressure 

field. Further, the dynamic pressure field is influenced by the presence of acoustic waves, resulting 

in a noisy pressure profile. Thus in order to extract critical parameters from this dynamic pressure 

field with fidelity, there is need for an integrated framework that is composed of a highly sensitive 

data acquisition system and advanced signal processing. Even though monitoring heart rate and 

cardiac arrhythmia is traditionally done using a 12-lead ECG, recent research shows that 

morphological characteristics of ECG change due to electrolyte, water and other chemical changes 

in the cardiovascular system. This change in chemical composition has a direct influence on the 

electrical activity of the heart, resulting in false alarms and consequently, diagnostic errors.  ECG 

is known for producing the highest quality measurement of heart rate, but it has been shown in the 

literature that heart rate measured from heart sounds is equally reliable as ECG [13]. Furthermore, 

the 12 lead ECG and the respiratory data acquisition systems cause extreme discomfort and restrict 

patient mobility. Although pulse oximetry is a gold standard monitoring technology for measuring 

blood oxygenation, the characteristics of the PPG signal are not fully understood among the 

medical community and it is still an area of active research [14] [15]. Also, blood oxygenation 

measurements of PPG are inaccurate when partial pressure levels of oxygen are high, and the 

inaccuracies also depend on properties of the skin which are highly subjective [16].  Further, core 

body temperature sensing technologies require the use of an additional catheter rather than using 

a preexisting arterial or venous line. Overall, the existing gold standard sensing technologies need 

multiple assessment systems in order to monitor critical cardiovascular hemodynamic parameters 

corresponding to various physiological processes. In addition, the existing clinical information 
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systems face limitations to achieve medical device interoperability, as accomplishing the 

integration and synchronization of various data acquisition systems used in the first stage is 

complicated. Existing information systems also do not acquire and store high resolution data. As 

a result, the complete morphology of the data acquired from various physiological sensors is not 

currently being used for clinical interventions. In addition, the current systems do not support the 

application of advanced data processing algorithms and consequently providing real time support 

for clinical decision making still remains as an unsolved challenge [17].  All the limitations of 

individual subsystems result in the following open challenges of critical and emergency care that 

need to be addressed. 

• Expensive Instrumentation and Complex Infrastructure: To achieve minimum standards of 

care, heart rate, respiratory rate, blood pressure, blood oxygen saturation and core body 

temperature need to be continuously monitored as initial biomarkers of health status. This 

implicates that the, use of 12-lead ECG, Capnography, Arterial Catheter, Plethysmography 

and Foley Catheter is imperative. Not only these multiple monitoring technologies induce 

extreme patient discomfort, but also demand complex infrastructure in terms of hardware 

and software, in addition to being very expensive. For these reasons, current state-of-the-

art critical monitoring technologies are ineffective and so in order to address this challenge 

of monitoring especially in low resource settings such as battlefields and emergency 

scenarios, a new approach is required.   

• Medical Device Interoperability: In current critical and emergency care, vital bio-signals 

are acquired from myriad physiological sensing technologies. Due to most of these 

technologies being stand-alone devices, they do not integrate with each other creating a 

limited functional interoperability. This lack of functional interoperability leads to issues 
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associated to time synchronization of the data acquired from various physiological 

processes, eventually leading to diagnostic errors. In addition, due to the limited 

interoperability, critical care diagnostics is subject to high false alarm rate. Though many 

solutions have been proposed to address this issue, interoperability remains as an open 

challenge to date. 

• Portability and Scalability: It has to be underlined that, existing critical and emergency 

care monitoring and diagnostic technologies are neither portable nor scalable. As a result, 

additional monitoring and diagnostic technologies are continuously brought in to meet the 

requirements of standard of care. The novel system presented in this work is portable, 

scalable and possibly applicable to multiple case studies of critical and emergency care.  

1.3 Motivation and Research Objectives 

Accomplishing monitoring from the dynamics of the blood flow is currently limited to 

measurement of continuous blood pressure. The hypothesis of this research is that, it is possible to 

extract other critical parameters such as heart rate, respiratory rate, blood oxygenation, and core 

temperature from the blood flow dynamics. Thus, our primary motivation of this research is to 

develop a novel point of care monitoring device that is capable of providing multiple critical 

 
Figure 1.2: Critical and Emergency Care Monitoring Using Novel Catheter Multiscope. 
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parameters by uniquely characterizing a physiological process, i.e., blood flow dynamics. Figure 

1.2 shows a basic overview of the concept of operations for the catheter multiscope monitoring 

critical parameters from a subject in critical and/or emergency care.   

Figure 1.3 shows the life cycle representation of the medical device development. 

Following the lifecycle, proof of concept and feasibility studies will be carried out to evaluate the 

usability of the catheter multiscope for critical care using a small animal model [18].  The proposed 

novel catheter multiscope is an enhanced version of the electronic catheter stethoscope [19] with 

respect to its data acquisition. In particular, the limitations of the existing blood flow based data 

acquisition systems in detecting the sensitive variations within the dynamic pressure will be 

addressed through integration of the enhanced data acquisition system and an advanced signal 

processing framework. The proposed novel catheter multiscope is expected to be a disruption in 

technology, such that, it will be potentially possible to address open challenges such as the need 

for expensive instrumentation and complex infrastructure; improvement in the diagnostic precision 

in low resource settings; and functional interoperability.  Further, the developed signal framework 

will also be extended to highlight the diagnostic potential of this technology for various case study 

applications. Specifically, proof of concept studies will be performed on applications such as sinus 

rhythm pattern recognition and fetal monitoring through phonocardiography. The proof of concept 

studies will demonstrate that the catheter multiscope can also be configured to be scalable and 

portable. 

 

 

 
Figure 1.3: Medical Device Life Cycle. 
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1.4 Contributions 

A novel critical and emergency care monitoring system has been developed to measure 

heart rate, respiratory rate, systolic and diastolic pressure with clinical accuracy from the blood 

flow dynamics. 

• Designed an innovative data acquisition system to uniquely characterize the blood flow 

dynamics.  

 The data acquisition system was designed to precisely characterize the sensitive 

dynamic pressure variations of the blood flow using a fluid coupled catheter and a novel 

polymeric membrane to act as fluid to air coupler. 

 The data acquisition system was also designed to deliver the pressure field without any 

distortions while minimizing other interferences using a waveguide. 

• Developed an innovative signal processing framework to extract vital bio-signals and the 

corresponding signal processing algorithms to compute critical parameters from the 

acquired blood flow dynamics. 

 Developed an efficient noise reduction algorithm to improve the signal to noise ratio 

of the acquired dynamic pressure field. 

 Developed a source separation algorithm to separate the data corresponding to various 

acoustic sources from a single channel observation. 

 Developed a validation metric to estimate the performance of denoising when the 

channel noise is not available. 

• Developed a procedure to validate and benchmark the performance of the proposed critical 

and emergency care data acquisition system.
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 Accomplished validation by comparing the critical parameters derived from the novel 

catheter multiscope to critical parameters derived from conventional measurement 

systems. 

In addition to demonstrating the feasibility of the developed novel catheter multiscope in 

critical and emergency care monitoring, the diagnostic potential of the developed technology has 

been shown in the following case studies. 

• Accurately recognized the sinus rhythm patterns using acoustic heart pulses from the novel 

catheter multiscope. 

 Developed a new feature called multiscale energy. 

 Developed a pattern recognition framework based on K-Means clustering. 

• Extracted the vital bio-signals of fetal phonocardiograms with fidelity. 

 Implemented the catheter stethoscope’s noise reduction and source separation 

framework to separate fetal and maternal heart sounds corresponding to various signal 

to noise ratio conditions of simulated fetal phonocardiograms 

 Validated the denoising and separation fidelity using validation metrics of the 

developed catheter multiscope. 

In comparison to the existing state-of-the-art, the developed critical and emergency care 

monitoring technology exhibits innovation in terms of complexity of the data acquisition system 

and a signal processing framework. The proof of concept and the feasibility studies show that the 

developed minimally invasive catheter multiscope can be used to measure critical parameters with 

clinical accuracy. It is expected that this dissertation will serve the needs of scientists, researchers, 

clinicians and other readers involved in the research and development of medical devices and 

biomedical signal processing. 
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1.5 Dissertation Organization 

The research that has been performed is organized and presented in the following chapters. 

1.5.1 Chapter 2: Survey of Critical and Emergency Care Monitoring Systems 

In this chapter, the background information about critical and emergency care monitoring 

and diagnostics is described. The diagnostic relevance of monitoring specific hemodynamic 

cardiovascular vital bio-signals in the critical and emergency care are also highlighted. A literature 

review on existing state-of-the-art critical care sensing technologies and clinical information 

systems is included in this chapter. In addition, a comprehensive introduction to various 

physiological signals (vital bio-signals) is presented from the perspective of the signal processing 

field.  

1.5.2 Chapter 3: Data Collection 

In this chapter, an overview of the human circulation system from the perspective of fluid 

mechanics and how various physiological systems influence the blood flow dynamics is provided. 

Then, how the data was collected for the feasibility study is described. Based on the fluid 

mechanics understanding of the human circulatory system, the interpretation of the collected data 

is provided. Finally, the chapter is concluded by laying the foundation for the development of the 

signal processing framework. 

1.5.3 Chapter 4: Signal Processing Framework 

In this chapter, a functional overview of the signal processing framework that was 

implemented to compute the vital bio-signals and critical parameters is provided. Further, a 

comprehensive description of the developed noise cancellation, the wavelet source separation and 

the novel blood pressure computation framework is presented. In addition, performance 

comparison results of various noise cancellation algorithms are provided. Finally, the chapter is 
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concluded by describing the validation results of wavelet source separation and blood pressure 

computation. 

1.5.4 Chapter 5: Application Case Studies 

In this chapter, an overview of special applications such as sinus rhythm pattern recognition 

and fetal monitoring through phonocardiography is provided. Further, a detailed description and 

results of feature extraction and pattern recognition framework for sinus rhythm pattern 

recognition are provided. Then, the chapter is concluded by providing the results of the noise 

cancellation and source separation techniques on the simulated fetal phonocardiograms.  

1.5.5 Chapter 6: Conclusions and Future Research 

A summary of the findings of this research is provided in this chapter. Then, directions for 

future research with respect to the data acquisition system design, data collection and signal 

processing framework have been provided in this chapter. In particular, the specifications and 

design for future generations of the data acquisition system is described. In addition, future 

directions for additional application case studies are also provided.  
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CHAPTER 2: REVIEW OF CRITICAL AND EMERGENCY CARE MONITORING 

PARAMETERS AND SYSTEMS 

 
 2.1 State-of-the-Art in Critical and Emergency Care Monitoring 

Critical and/or emergency care begins with minimum standards of monitoring. However, 

depending on the status of the patient, a full spectrum of hemodynamic cardiovascular parameters 

come into play that aid in determining the future clinical interventions. The complete set of critical 

parameters can be classified into four groups.  They are pressure, cardiovascular, respiratory and 

miscellaneous. In addition to the parameters, their respective sensing technologies are also shown 

in Table 2.1.  In addition to the traditional sensing technologies, a number of other alternative 

technologies are often employed to estimate other critical hemodynamic and respiratory 

parameters. This chapter provides an introduction to the morphology of all the vital bio-signals, 

an overview of all the fundamental hemodynamic parameters, a review of the existing sensing 

technologies, clinical information systems and other frequently used alternative technologies.  

Table 2.1: Critical and Emergency Care Cardiovascular Hemodynamic Parameters. 
Cardiovascular Parameters Sensing Technology 

Heart Rate (HR) ECG, PCG, Pulseoximetry, Blood 
Pressure 

Cardiac Output (CO) Dilution Methods, Pulse Wave Velocity 
Analysis and Bioimpedance 

 
Pressure Parameters Sensing Technology 

Mean Arterial Pressure (MAP) Arterial Catheter 
Central Venous Pressure (CVP) Central Venous Catheter 
Mean Pulmonary Arterial Pressure (MPAP) Pulmonary Arterial Catheter 
Pulmonary Arterial Occlusion Pressure (PAOP) Pulmonary Arterial Catheter 
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Table 2.1 (Contd.) 
Respiratory Parameters Sensing Technology 

Respiratory Rate (RR) Capnogram, Pneumatograph and ECG. 
End Tidal Carbon-dioxide Pressure (ETCO2) Capnogram 
 

Miscellaneous Parameters Sensing Technology 
Peripheral Oxygen Saturation (SPO2) Pulseoximetry 

Arterial Hemoglobin Saturation (SAO2) 
Blood Sampling Analysis and 
Pulseoximetry 

Arterial Oxygen Tension (PAO2) Blood Sampling Analysis 
Mixed Venous Oxygen Saturation (SVO2) Blood Sampling Analysis 
Mixed Venous Oxygen Tension (PVO2) Blood Sampling Analysis 
Arterial pH (pH) Blood Sampling Analysis 
Hemoglobin (Hgb) Blood Sampling Analysis 

Core Temperature (T) Pulmonary Arterial Catheter and Foley 
Catheter 

 

2.1.1 Electrocardiogram (ECG) 

ECG is a graphical representation of the electrical activity of the cardiovascular system. 

The wave-like pumping action of the heart is controlled by a network of neural fibers that are 

distributed throughout the myocardium and coordinate its regular contraction and relaxation. The 

myocardial stimulation starts from the Sinoatrial Node (SA-node). The SA-node is a cluster of 

cells located in the upper-right posterior wall of the right atrium, which sends the electrical impulse 

that triggers each heartbeat. This impulse further stimulates the second cluster of cells, namely the 

Atrioventricular Node (AV-node) that is situated in the lower posterior wall of the right atrium. 

After the AV-node, the depolarization front enters the bundle of His, the left and right bundles, 

and ends in the Purkinje fibers, depolarizing the ventricular muscles in its way. The procedure of 

myocardium contraction is known as the depolarization (or systole) cycle that is followed by the 

repolarization (or diastole) cycle, in which the myocardium relaxes and becomes ready for the next 

activation. A complete cardiac cycle is depicted in Figure 2.1.  This cardiovascular electrical 

activity is transmitted throughout the body and can be measured across the chest using either 1-
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lead or 3-lead or 5-lead or 6-lead or 12-lead skin electrodes. For critical and emergency care, 12-

lead ECG is considered the gold standard, due to its measurement accuracy [20].  

The ECG measured on the body surface is a result of the stage-wise activation of the 

myocardium and results in the PQRST-complex depicted in Figure 2.1.  The P-wave is the result 

of the atrial depolarization. This depolarization starts at the SA-node and spreads to ventricles 

through the AV-node. The QRS complex represents the ventricular depolarization. Then, atria and 

ventricles repolarize. However, atrial repolarization is obscured by the QRS complex and ventricle 

repolarization is represented through the T wave [21]. One of the main uses of ECG in the critical 

and emergency care is continuous monitoring of heart rate. The heart rate represents the time 

consumed by the heart to complete one cardiac cycle. The HR is one of the high priority critical 

parameters and is typically measured as the time interval between current and previous R-waves 

of ECG.  Arrhythmias are other leading cause of death among critical and emergency care patients. 

Hence, many critical and emergency care units detect arrhythmia through continuous ECG 

monitoring. In addition, ECG is also used to provide complimentary information about respiratory 

system through RR computation [22]. Though ECG provides significant diagnostic information, 

its use is limited due to some critical challenges. ECG data acquisition is complex and due to this, 

it is known to induce discomfort and restrict patient mobility. Studies like [23] [24] have often 

shown that morphological characteristics of the ECG change due to electrolyte, water and other 

chemical changes in the cardiovascular system. In the context of critical and emergency care, 

drugs, medication and nutrients are frequently delivered to induce changes in the micro and macro 

circulation. This often leads to changes in the cardiovascular system’s electrolyte composition. 

This composition change will result in diagnostic errors and false alarms due to the changes in the 

ECG’s morphological characteristics. Hence, there is an increased need to develop a medical 
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device that provides reliable and consistent results even during chemical composition change in 

the cardiovascular system and that addresses other ECG limitations. In addition to the ECG, an 

alternative technology that records acoustic activity of the heart is often used. This is known as 

phonocardiogram and it provides vital information with respect to cardiovascular abnormalities 

[13]. 

2.1.2 Blood Pressure (BP) 

High blood pressure is a leading risk factor responsible for high cardiovascular morbidity 

and mortality rates. Hence, precise and accurate monitoring of continuous blood pressure is 

imperative in critical and emergency care. The main function of the human circulatory system is 

to transport oxygen and other nutrients to the tissues and to carry waste away from the cells. The 

nutrients and the oxygen are carried to various parts of the body through oxygenated blood flow 

via arteries, and waste through deoxygenated blood flow via veins. The blood flows in the blood 

vessels due to the pumping action of the heart. The heart can be divided into four chambers and 

two pumping systems. Each pump has a filling chamber known as the atrium, which helps to fill 

a pumping chamber known as the ventricle. The oxygenated blood flows from the lungs into the 

left ventricle through left atrium and mitral valve. The left ventricle then ejects the blood into the 

aorta through the aortic value. Blood is then distributed to various parts of the body through 

branching network of arteries, arterioles and ventricles. Similar to the arterial system, the 

deoxygenated blood from different parts of the body reaches the right atrium through the venous 

system. The deoxygenated blood flows into the right ventricles through the tricuspid valve and 

into the pulmonary artery through the pulmonary valve. During diastole, the atria contract to 

generate sufficient pressure to open the mitral and tricuspid valves, thereby filling the ventricles. 

Then, during systole, aortic and pulmonary valves open due to pressure generated by ventricular 
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contraction. This mechanical contraction of the ventricles forces the blood to flow in arteries and 

veins [8]. In effect, the flowing blood exerts pressure onto the walls of the blood vessels 

contributing to blood pressure.   

 
Figure 2.1: Morphology of the Electrocardiogram. Data Obtained from MIT–BIH Long-Term 

ECG Database [25]. 

Many technologies exist to measure blood pressure. They can be classified into three 

groups based on the measurement technique: invasive, oscillometric and unobtrusive, also known 

as cuffless. In the context of critical and emergency care, since continuous monitoring of the blood 

pressure is imperative, invasive blood pressure measurement is considered to be the gold standard. 

Invasive blood pressure measurement typically involves the use of a catheter. Based on the location 

of the sensing element, invasive measurement can be further classified into intravascular and 

extravascular measurement systems. In the extravascular pressure measurement systems, the 

vascular pressure is fluid coupled to an external sensing element. The catheter is inserted into the 

arterial or venous system through a cannula, where the proximal end of the cannula is immersed 

in the blood and the distal end is connected to the proximal end of the fluid filled catheter. The 

distal end of the fluid filled tube is connected to either a drug delivery system or a saline delivery 
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system.  The column that couples the vascular pressure through fluid to the diaphragm of the 

pressure transducer is housed before the drug delivery system as shown in Figure 2.2.  

 
Figure 2.2: Invasive Extravascular Pressure Measurement System. 

On the other hand, in the intravascular pressure measurement systems, the sensing element 

is housed at the tip of the catheter and is placed directly into the vascular system. Among non-

invasive blood pressure measurement techniques, the oscillometric technique is a widely used 

method. The oscillometric techniques estimate the blood pressure through auditory detection of 

the turbulent blood flow sounds occurring due to inflation of the occlusive cuff around an artery. 

These turbulent blood flow sounds are detected using a stethoscope by stepwise deflation of the 

inflated cuff. The pressure detected at the first and the last instances of the turbulent blood flow 

sounds are considered to represent pressure during systole and diastole, respectively. Unobtrusive 

blood pressure monitoring methods are among recent developments and are still under research. 

The objective of unobtrusive monitoring is to estimate blood pressure continuously and non-

invasively. Existing unobtrusive methods estimate blood pressure by linearly or nonlinearly 

modeling the pulse transit time or the pulse wave velocity. Pulse transit time or pulse wave velocity 
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is currently being measured using either electrical, optical, magnetic, mechanical or impedance 

based sensing technologies [8] [26] [27]. 

It is worth noting that the blood pressure is different at various body sites. In particular, 

arterial pressure, central venous pressure and pulmonary arterial pressure are the most widely 

monitored vital bio-signals in critical and emergency care. Arterial pressure is representative of 

pressure of blood exerted on the walls of arteries. This pressure is commonly measured in radial, 

femoral, carotid arteries or aorta through the use of an arterial catheter. The arterial pulse is a 

forward propagating pressure wave that is generated due to stroke volume changes during each 

cardiac cycle. The arterial pressure waveform is a periodic waveform that can be represented as a 

summation of six sinusoidal components. Each local maxima in the waveform occurs when the 

ventricle contracts and forces the blood into the aorta, this is referred to as systolic pressure. 

Similarly, local minima in the waveform occur after the aortic valve closes and when the ventricles 

relax; this is referred to as diastolic pressure. In addition, the arterial pressure waveform also 

reflects the valve closure as a high frequency interruption in the signal and it is commonly referred 

to as the dicrotic notch. As the pressure reaches the minima, the aortic valve opens and the blood 

starts flowing into the aorta, usually seen as an increasing signal with positive slope and the 

pressure reaches a local maxima. This process periodically repeats for each cardiac cycle [28]. 

From the arterial blood pressure vital bio-signal, critical parameters such as systolic, diastolic and 

mean arterial pressures are estimated. The critical parameters estimated from arterial blood 

pressure vital bio-signal contain information with respect to afterload, i.e., tension developed by 

the myocardium during ventricular systolic ejection [5] [29]. In addition to the after load, 

information with respect to preload is also another parameter that is measured in critical and 

emergency care. Preload provides information with respect to intravascular volume, i.e., amount 
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of blood returned to the heart which is reflective of perfusion abnormalities. This is accomplished 

by measuring CVP, i.e. pressure in the right atrium, using a central venous catheter. The CVP 

waveform is typically represented by acxvy components. Each component of the CVP waveform 

has a direct relevance to the events of a cardiac cycle [30]. Pulmonary arterial pressure is another 

vital bio-signal that is continuously monitored for high risk patients in critical and emergency care. 

The pulmonary arterial pressure is measured using a balloon tipped Swan-Ganz catheter. The 

Swan-Ganz catheter is typically placed in pulmonary artery and the pressure is recorded. In 

addition, when the balloon tip of the catheter is inflated and placed in a branch of the pulmonary 

artery, the measurement results in the PAOP. The waveforms of the pulmonary arterial pressure 

and the PAOP are also characterized by the a, the c and the v components. MPAP and mean PAOP 

(MPAOP) are the critical parameters that are computed from pulmonary arterial pressure signals 

[31] [32].  In addition to pulmonary arterial catheter, recent developments have led to the 

assessment of MPAP and MPAOP using ultrasound technology [33] [34] [35].  Figure 2.3 shows 

various waveforms collected as of part of intensive care monitoring in The Massachusetts General 

Hospital and published as “The MGH/MF Waveform Database” in the PhysioNet databank [36] 

[25]. 

Various technologies exist to assess the pressure based vital bio-signals and the 

corresponding critical parameters. In the context of critical care, catheter based pressure 

measurements are considered to be gold standard to date. However, these catheter based pressure 

measurement systems provide limited information. As of today, these systems only provide blood 

pressure information. However, in order to get information with respect to other fundamental 

critical parameters, today’s standard of care has to rely on other technologies. With few 
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modifications, the catheter based systems will be able to provide all the fundamental critical 

parameters. This is one of the main challenge that is addressed in this dissertation. 

 
Figure 2.3: Morphology of ECG, ART, PAP, CVP Bio-signals. Data Obtained from [36] [25]. 

 

2.1.3 Cardiac Output (CO) 

Cardiac output is one of the most important critical parameters that is continuously 

monitored for high risk patients in critical and emergency care. It is defined as the volume of blood 

pumped by the heart per minute.  CO is a widely used diagnostic tool to detect various conditions 

including cardiovascular shocks and also to determine if fluid resuscitation and other medications 

are needed based on the hemodynamic profile. Traditionally in critical and emergency care, CO is 

measured using a pulmonary arterial catheter and a dilution technique. In the dilution techniques, 

an agent of known concentration and temperature is injected into the right atrium through the distal 
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end of the pulmonary arterial catheter. Due to constant stroke volume change, the concentration of 

the mixture of agent and blood starts reducing and the temperature of the blood changes. This 

change in the temperature of the blood is monitored constantly as the thermodilution curve. The 

measured temperature and the initial volume of the agent in combination will be used to determine 

the CO [37]. CO can also be estimated using ultrasound and echocardiography, in particular, the 

distance traveled by a column of blood for each cardiac cycle is estimated, i.e., blood flow velocity. 

The measured blood flow velocity is directly proportional to stroke volume and hence CO. CO can 

also be estimated using technologies that involve bioimpedance and pulse contour analysis 

techniques. In the bioimpedance method, the change in the impedance of the electrodes placed on 

the chest is directly correlated to the blood volume change used to estimate the CO. On the other 

hand, the pressure pulse velocity is determined using either electrical, optical, magnetic, 

mechanical or impedance based sensing technologies which can be linearly or nonlinearly modeled 

to estimate CO. Based on the techniques discussed, various alternative sensing technologies have 

been developed to provide information with respect to CO as described in [38] [39]. 

2.1.4 Capnography 

Continuous monitoring of the cardiorespiratory system is essential to provide necessary 

ventilation support for patients in critical and emergency care. Although, different parameters 

provide relevant information with respect to the respiratory system, RR and ETCO2 are the 

essential critical parameters being used today. They are typically derived from the capnogram, a 

vital bio-signal. Capnography is a method used to detect the concentration of carbon-dioxide in a 

sample of gas. The sample of gas exchanged by the patient is collected either through a nasal 

cannula or through an intubation tube for absorption spectroscopic analysis. As the carbon-dioxide 

absorbs the infrared light, the transmitted spectra is analyzed and calibrated to provide the 
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concentration of carbon-dioxide in the subject’s gas sample. Measuring and tracing this carbon-

dioxide concentration over time will result in the vital bio-signal called capnogram. The 

capnogram is a periodic waveform that represents events of a complete respiratory cycle. The 

events of respiratory cycle are inspiration, expiratory stroke, expiratory plateau and expiratory 

downstroke. During inspiration, the concentration of the carbon dioxide remains to be at a 

consistent baseline line, then as the expiratory begins, the alveolar gases get emitted. The alveolar 

gases predominantly contain carbon dioxide and hence its concentration begins to reach a local 

maxima, i.e., gets plateaued. After the complete volume of alveolar gases get expired, the 

inspiration begins. Right after inspiration, and before expiratory plateau, there is a momentary 

dead space when the both the inspiratory and alveolar gas exchange ends, this region is known as 

expiratory stroke. Also, as soon as the concentration of carbon dioxide reaches a local maxima, 

there exists some dead space when both the expired and inspired gas exchange end, this is known 

as the expiratory downstroke. From this waveform, critical parameters, RR and ETCO2 are 

computed. RR is computed as time expired for both inspiration and expiration per minute; ETCO2 

is the maximum concentration of the CO2 in the expired gas i.e., the local maxima of the event 

expiratory plateau. In addition to time-based capnogram, volume based capnogram is also widely 

used. Additional details on capnography based cardiorespiratory monitoring and trends in 

capnography technologies are presented in [40] [41] [42]. In addition, volume based critical 

parameters such as tidal volume, vital and total lung capacities are measured using spirometers, 

pneumatographs and other alternative technologies [43]. 

2.1.5 Plethysmograph 

Ensuring oxygen delivery to tissues is one of the main objectives of the cardiorespiratory 

system. During respiration, the inspired oxygen in the lungs bind to deoxygenated blood, making 
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it oxygenated blood. Most of the oxygen in the lungs bind to hemoglobin. Small amount of oxygen 

dissolves in the blood plasma. This oxygenated blood is then pumped out of the heart into the 

aorta, and then into the arteries, arterioles and eventually into the capillary networks. These 

networks of capillaries supply tissues with oxygen and nutrients. Plethysmograph is a tracing of 

the amount of oxygen that is bound to hemoglobin at the tissue level, also known as SPO2. The 

oxygenated and deoxygenated hemoglobin levels in the blood are detected using absorption based 

infrared spectroscopy transcutaneously. The vital bio-signal waveform obtained using 

spectroscopy is known as plethysmography or pulse oximetry. This waveform contains 

information with respect to arterial blood, tissue, and respiration. It contains an AC and a DC 

component. The percentage of SPO2 is the critical parameter that is calculated using amplitude 

ratios of both the AC and the DC components of plethysmography. It has to be noted that, SPO2 

is considered to be an indirect measurement of SAO2. Additional details of the plethysmography 

are described in [44] [45].  

2.1.6 Miscellaneous Critical Parameters 

Arterial hemoglobin saturation (SAO2), arterial oxygen tension (PAO2), mixed venous 

oxygen saturation (SVO2), mixed venous oxygen tension (PVO2), arterial pH (pH), hemoglobin 

(Hgb) and core temperature (T) are among the other miscellaneous critical parameters that are 

often measured in critical and emergency care. SAO2 is the measurement of concentration of 

oxygenized hemoglobin in the arterial blood and PAO2 is the measurement of concentration of the 

oxygen dissolved in arterial blood plasma. In addition to critical parameters corresponding to the 

arterial blood, parameters corresponding to venous oxygenation such as SVO2 and PVO2 are also 

measured. SVO2 is the measurement of oxygen concentration bound to hemoglobin in venous 

blood, and PVO2 is the measurement of oxygen concentration dissolved in venous blood plasma.  
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These parameters are measured using either blood sampling analysis or by using an indwelling 

fiber optic catheter. In blood sampling analysis, a column of blood is sampled from either an 

arterial or a venous body site and is subjected to spectroscopic analysis using blood gas analyzers. 

In order to measure the concentration of the blood plasma in arterial or venous blood, the blood 

cells are separated from blood plasma either using centrifugal techniques or using a reagent. Then, 

the plasma is made to interact with a metal testing strip to determine the concentration of 

compounds of interest in the plasma. In addition, various alternative techniques involving 

spectroscopy systems in combination with linear and nonlinear modeling are being developed for 

rapid blood analysis. It also has to be noted that, other parameters such as total hemoglobin, 

concentration of other electrolytes and acidity level within the blood are monitored for patients 

with advanced risk in critical and emergency care. Core temperature is also a parameter that is 

usually measured from a sample extracted from either pulmonary arterial catheter or urinary Foley 

catheter. Additional information regarding miscellaneous parameters and electrolyte concentration 

is provided in [46] [47] [48] [49].  

2.1.7 Clinical Information Systems 

It is well established that there are several vital bio-signals corresponding to various 

physiological processes that must be continuously monitored in critical and emergency care. In 

addition, various critical parameters corresponding to the vital bio-signals are also continuously 

computed and monitored. A clinical information system is often employed in critical and 

emergency care to integrate and visualize the critical parameters and vital bio-signal collected from 

corresponding physiological processes. As of today, several clinical information systems are 

commercially available to provide end-to-end solutions to integrate diverse patient sensing or 

monitoring systems. It is estimated that the market value for these system has exceeded $1.3 billion 
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due to the volume of information available in the intensive and emergency care setting. Currently, 

GE’s Centricity and Philips IntelliVue Clinical Information Portfolio are the most commonly used 

commercial critical and emergency care information systems [17]. The vital bio-signals 

corresponding to various physiological processes are typically generated by standalone sensing 

technologies and either analog or digital data is available depending on the technology. The data 

available from these technologies is integrated through either a serial (RS-232 or I2C or USB),  

Ethernet (802.3) port or using wireless (802.11b/g or Bluetooth) communication for digital data. 

For analog data, standard hardware interfaces are used. Though, high resolution physiological data 

is not collected, snapshots of the acquired vital bio-signals and critical parameters are displayed 

on monitors to aid in the clinical decision making. In addition, a standard architecture to integrate 

and acquire continuous physiological data is yet to be established. Recent developments in clinical 

information systems can be found in [17]. 

  



www.manaraa.com

25 
 

CHAPTER 3: DATA COLLECTION 
 

3.1 Fluid Mechanical Perspective of Blood Circulation 

The circulatory system can be described as a closed loop system that is directly regulated 

by the cardiovascular system and the respiratory system and controlled by the nervous system. As 

a result, the dynamics of the blood flow is influenced by factors such as length of cardiac cycle, 

stroke volume, rate of respiration, volume of respiration and baroreflex control. This complex 

interrelationship within various subsystems of the human body make the dynamics of the blood 

flow an interesting phenomenon. Several studies in the literature have underlined the significance 

of various factors that affect the blood flow, Cardiac Output (CO), i.e., the amount of blood 

pumped by the heart per minute, which is usually computed as a product of HR and stroke volume. 

Thus, increasing the heart rate or increasing the contractile strength of the ventricles, i.e., stroke 

volume, CO can be increased. In addition, it is well established that variability of heart rate is 

influenced by the baroreflex control and the breathing in the form of Meyer waves and respiratory 

sinus arrhythmia [50] [51]. In addition to CO, blood flow dynamics is also affected due to the 

properties of the arteries and veins. The properties of the arteries and veins such as elasticity, 

vascular resistance and thus the diameter of the corresponding blood vessels are controlled by the 

baroreflex feedback [52] [53]. Studies have also shown that baroreflex controls the dynamics of 

the blood flow based on the respiratory parameters such as volume and rate of respiration [54] [55] 

[56] [57] [58].  
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The circulatory system can be approximated as a fluid pumping system as shown in Figure 

3.1. In Figure 3.1, the deoxygenated blood is collected from the organs and is sent to the lungs. 

Then, the oxygenated blood is collected from the lungs and is distributed to the organs. According 

to Bernoulli’s principle, the total energy of any frictionless fluid flow is conserved.  As a result, 

blood flow in the blood vessels can be described using Bernoulli’s principle. The total energy of 

the blood flow in any blood vessel is the summation of its static pressure, dynamic pressure and 

gravitational head. The static pressure of the fluid is the pressure generated due to the force exerted 

by all the fluid elements on each other i.e. intramolecular pressure. In the case of steady state flow, 

the static pressure is directly dependent on the volumetric flow rate of the fluid. Due to this static 

pressure, the blood exerts pressure in all directions including on the walls of the blood vessels, 

contributing to blood pressure. In addition, since the blood is pumped with some velocity by the 

ventricular contraction during each cardiac cycle, the fluid also contains kinetic energy that is 

directly proportional to its velocity. This kinetic energy is often referred to as dynamic pressure. 

In addition, the pulsatile flow of blood influences the flow within the blood vessels with an 

unsteady acceleration. Overall, the pressure wave propagates mainly due to radial and axial fluid 

motion. While radial motion is due to the static pressure, axial motion is due to the dynamic 

pressure [8] [59]. Also, since the pressures are acquired at an increased elevation, the fluid also 

exhibits gravitational head due to the weight of the fluid. As of to date, blood flow has been mainly 

used to obtain information with respect to blood pressure. However, since the blood flow dynamics 

contain a plethora of information in the form of multi-dimensional pressure wave with regards to 

various cardiovascular, respiratory, and other subsystems, the blood flow dynamics was selected 

as a phenomenon of interest to obtain multiple critical parameters. In this dissertation, a novel data 

acquisition system was designed to characterize the blood flow dynamics and to obtain information 
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with respect to multi-dimensional pressure field. The details of the design and the data collection 

are provided in the following sections1,2.  

 
Figure 3.1: Fluid Pumping System Approximation of Circulatory System. 

3.2 Data Acquisition System Design 

 Figure 3.2 illustrates the block diagram overview of the data acquisition system that was 

used to determine multiple vital bio-signals from the animal model. As shown in Figure 3.2, the 

system includes a silicone or polyvinylchloride catheter comprising a flexible tube that is 

configured for insertion in a subject’s blood vessel, such as an artery or vein. When inserted, the 

distal end of the catheter is immersed in the blood that flows through the vessel. The proximal end 

of the catheter is received by, and therefore connected to, a coupling member that is, in turn, 

connected to a waveguide. As is also shown in Figure 3.2, a port has been provided along the 

                                                           
1The content described in Chapters 3 and 4 are part of US provisional [122] and utility patent applications [123]. 
2A preliminary version of the content presented in Chapter 3 and 4 have been published in the proceedings of 39th 
annual international conference of the IEEE Engineering in Medicine and Biology Society [121]. 
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length of the catheter between its distal and proximal ends that can be used to flush the catheter 

with an appropriate fluid, such as saline solution. Mounted to the coupling member is a flexible 

barrier. This barrier is formed using a thin polymeric membrane that is on a first side in fluid 

communication with the blood delivered to the coupling member by the catheter and on a second 

side in fluid communication with air contained within an interior air chamber of the waveguide. 

At the proximal end of the waveguide, a pressure field microphone isolated from the environment 

is housed to measure the pressure within the waveguide. The waveguide that is housing the 

pressure field microphone is mounted on a vibration isolating stainless steel tray. In addition, a 

free field microphone placed within close proximity to the subject is also used to measure reference 

acoustic noise. Specifically, the free field microphone is directed towards the subject using a 

stainless steel holder mounted on a tripod. It also has to be noted that both pressure and free field 

microphones were located at the same elevation from the ground as that of the subject and forming 

an angle less than 45o among themselves during the measurement. In the current feasibility study, 

a GRAS 46 AD, a pressure field microphone with frequency response of 3.15 Hz – 10 kHz and a 

G.R.A.S 46 AE, a free field microphone, have been used to measure pressure field and reference 

acoustic noise respectively [60] [61]. Since both G.R.A.S microphones require a constant current 

power supply of 4 mA and 24 V for optimal performance, a National Instruments PXI 4462 system 

is used to provide constant power to the microphones through a British naval connector. The 

measured data from both the channels was digitized and stored at a sampling frequency of 10 kHz 

and 24 bit quantization rate using PXI 4462 system and LabVIEW data acquisition drivers [62]. 

As shown in Figure 3.2, the waveguide is designed to be conical and special attention has been 

paid to estimate the ideal distance between the barrier and the microphone based on the length of 

the sensing element. These design considerations have enabled maximal energy transfer while 
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attenuating the effects of reflections and reverberation and without distorting the frequency of the 

actual pressure wave. 

 
Figure 3.2:  Block Diagram Representation of the Data Acquisition System.  

3.3 Data Collection Approach 

The data collection approach defines type and location of the data being acquired.  Vascular 

pressures were obtained from various arterial and venous body sites of an anesthetized Yorkshire 

pig in supine position.  The obtained vascular pressures were coupled from the subject to the 

extravascular pressure field microphone through a fluid coupled catheter using a preexisting 

arterial or venous line.  A total of twelve pressure measurements were obtained from six different 

body sites as part of this study.  Two different pressure measurements were obtained at each body 

site, one without the influence of epinephrine and other with influence of epinephrine. Table 3.1 

illustrates the sequence in which the design of experiments was conducted for all the acquired 

pressure measurements. In addition, heart rate, respiratory rate and blood pressure were measured 

prior to and post the vascular pressure acquisition for the purpose of benchmarking. These 

parameters were obtained from the state-of-the-art Philips IntelliVue critical care clinical 

information system. It has to be noted that, this study was performed by strictly adhering to ethical 

standards of the Institutional Animal Care & Use Committee. In addition, all the animal studies 
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corresponding to this research were performed at the University of South Florida’s Center for 

Advanced Medical Learning and Simulation facilities eCath laboratory. Appendix B contains 

relevant documentation with regards to IACUC approval for the animal studies. 

Table 3.1: Design of Experiments For Measured Blood Flow Dynamics. 
Recording 

Index Body Site Catheter 
Size Epinephrine 

1a Artery Carotid Left Side of Neck 5F No 
1b Artery Carotid Left Side of Neck 5F Yes 
2a Venous Jugular Right Side of Neck 5F Yes 
2b Venous Jugular Right Side of Neck 5F No 
3a Venous Femoral Right Leg 4F No 
3b Venous Femoral Right Leg 4F Yes 
4a Venous  Femoral Left Leg 6F Yes 
4b Venous Femoral Left Leg 6F No 
5a Artery Peripheral Left Ear 20F No 
5b Artery Peripheral Left Ear 20F Yes 
6a Artery Femoral Left Leg 5F No 
6b Artery Femoral Left Leg 5F Yes 
      

3.4 Description of the Measurements 

The blood flows from the venous or arterial body site into the catheter and reaches the 

flexible barrier that stagnates the flow of blood and ultimately acts as a fluid to air coupler.  At this 

boundary, the blood column oscillates and this oscillation depends on the frequency of stagnation 

pressure of the blood flow, i.e., the frequency at which the blood is being pumped.  The stagnation 

pressure that is impinged onto the barrier induces a pressure field in the waveguide. According to 

the basic principles of fluid mechanics, the total pressure (Ptotal) is the sum of static pressure (Pstatic) 

and dynamic pressure (Pdynamic) [63].  Pstatic results from intramolecular interaction and Pdynamic 

results from the velocity of the blood flow. These pressures are traditionally measured using a 

combination of piezometer and Pitot tube.  Based on the configuration in which the pressure field 

microphone was arranged to acquire pressure data, it was considered that the measured pressure is 

Ptotal.  In order to understand how the stagnation pressure or total pressure is being measured, 



www.manaraa.com

31 
 

Bernoulli’s equations are used in the following derivation as means to provide a theoretical 

understanding of the measurements. Figure 3.3 presents a zoomed in view of the data acquisition 

system that was used is measuring Ptotal of the blood flow. 

 
Figure 3.3: Zoomed in View of the Data Acquisition System. 

As shown in Figure 3.3, the catheter orifice is at point 1, where point 1 is located at an 

elevation level h1 from the reference datum and the barrier, i.e., the stagnation point 2 is located at 

an elevation level h2 from the reference datum. In order to show that, the stagnation point 2 

experiences Ptotal, the Bernoulli’s energy conservation equations are written for points 1 and 2. 

Noting that at point 1, the static pressure is P1 and the velocity is V1 and at point 2, the static 

pressure is P2 and the velocity is V2. The following expression can be written using the Bernoulli’s 

principle. 

𝑃𝑃1 +
1
2
ρ𝑉𝑉12 + ρ𝑔𝑔ℎ1 = 𝑃𝑃2 +

1
2
ρ𝑉𝑉22 + ρ𝑔𝑔ℎ2 (1) 
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In equation (1), 1
2
ρ𝑉𝑉12 and 1

2
ρ𝑉𝑉22 are the dynamic pressures, ρgh1 and ρgh2 are gravitational 

heads at points 1 and 2, respectively. As the blood reaches the barrier, its velocity V2 at point 2 

becomes zero, resulting in the equations (2) and (3). 

𝑃𝑃1 +
1
2
ρ𝑉𝑉12 + ρ𝑔𝑔ℎ1 = 𝑃𝑃2 + ρ𝑔𝑔ℎ2 (2) 

𝑃𝑃1 +
1
2
ρ𝑉𝑉12 + ρ𝑔𝑔(ℎ1 − ℎ2) = 𝑃𝑃2 (3) 

Equation (3) proves that the barrier induces a pressure field equivalent to Ptotal into the 

waveguide. It was also observed that the pressure field microphone partly cancelled out the Pstatic 

data from the acquired Ptotal data through a static pressure equalization vent that was originally 

designed to equalize the effect of ambient pressure [64] [65].  Therefore, it was concluded that the 

acquired Ptotal predominantly consisted of pressure data corresponding to Pdynamic and trace amounts 

of Pstatic.  This provided motivation to derive the Pstatic from the acquired Ptotal.  In standard invasive 

pressure measurement systems, Pstatic is the measured pressure and Ptotal is not measured. However, 

in this study, both Pdynamic and Pstatic were measured by uniquely characterizing the acquired Ptotal 

as described in the next chapter.  
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CHAPTER 4: SIGNAL PROCESSING FRAMEWORK 
 

4.1 Background of Processing Blood Flow Dynamics  

The signal processing framework shown in Figure 4.1, follows a basic approach in the 

extraction and analysis of Pstatic and Pdynamic from the measured Ptotal.  Analyzing the acoustic field 

using the Pdynamic processing framework resulted in the acoustic heart and respiratory pulses.  

Reconstructing the pressure field using the Pstatic processing framework resulted in the extraction 

of continuous blood pressure, i.e., systolic and diastolic pressures.  Pstatic will be referred to as the 

pressure field and Pdynamic as the acoustic field of the blood flow in the rest of this dissertation.  As 

shown in Figure 4.1, the acoustic field was processed using noise reduction and source separation 

algorithms and the pressure field was processed using a novel compression and a sensor 

attenuation factor regression model to result in the corresponding vital bio-signals. 

 
Figure 4.1: Signal Processing Framework to Extract Vital Bio-signals from the Blood Flow 

Dynamics. 
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4.2 Acoustic Heart and Respiratory Pulse Computation Framework 

Analysis and processing of Pdynamic is viewed as a problem that requires a combination of 

active noise cancellation and source separation for SNR improvement and bio-signal extraction.  

Pdynamic is the result of acoustical sound pressure created by the oscillation of the blood column at 

the boundary of the barrier. Effectively, it is the sound of the blood flow or the acoustic field of 

the blood flow.  Since the measurement was made in a noisy clinical setting, the blood flow sound 

was interfered by other acoustical sources present in the setting.  Thus, in order to extract the bio-

signals with fidelity from this measurement, the acquired Pdynamic needed to be enhanced using a 

noise cancellation technique.  Further, a comparative performance evaluation of spectral 

subtraction and various Least Mean Squares (LMS) based adaptive noise cancellation techniques 

was accomplished based on Noise Factor (NF) and Signal to Noise Ratio (SNR).  In order to extract 

multiple bio-signals from the noise enhanced signal, a source separation technique based on 

Multiresolution Analysis (MRA) was also developed.  The block diagram of the developed 

framework for processing the blood flow acoustics is shown in Figure 4.2. In Figure 4.2, 

measurements from the G.R.A.S 46 AD and 46 AE microphones are processed using noise 

cancellation and source separation blocks to obtain the vital bio-signals. 

 
Figure 4.2:  Overview of Blood Flow Sound Processing. 

4.2.1 Noise Cancellation 

In the noise cancellation block, the microphone measurements are subject to initialization 

where the data is decimated and segmented into frames. Then, the segmented data from both 
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channels is processed using noise reductions algorithms that include spectral subtraction and LMS 

based adaptive noise cancellation algorithms as described in the following subsections. 

4.2.1.1 Spectral Subtraction 

Spectral subtraction is a widely employed technique in applications that require 

cancellation of interference from acoustic noise.  Many studies used a single channel spectral 

subtraction technique that assumed stationarity of the noise in order to improve the SNR of the 

sound pressure measurement [66, 67, 68].  However, it has been shown by studies [69, 70] that a 

multichannel spectral subtraction is not only computationally simple but also very efficient in 

improving the SNR of sound pressure measurements, particularly when a part of the reference 

acoustic noise is assumed to be superimposed into the sound pressure measurement by means of 

an unknown system as shown in Figure 4.3.  The fluid filled catheter and the waveguide from the 

data acquisition system, as shown in Figure 3.3, were identified as the major components of the 

system with unknown impulse responses through which the noise, n(n), that is correlated to the 

reference acoustic noise, n0(n), gets superimposed onto the desired signal, x(n).  In this study, a 

spectral magnitude subtraction technique was implemented to remove the noise superimposed onto 

the data channel.  Figure 4.3 shows the block diagram of the implemented spectral subtraction 

algorithm. 

 
Figure 4.3: Block Diagram Representation of the Implemented Spectral Subtraction 

Algorithm. 
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In Figure 4.3, the implemented spectral subtraction algorithm includes a data channel that 

measures the acoustic field of the blood flow dynamics, d(n), where n is the sample index, and a 

noise channel that measures reference acoustic noise from the clinical setting, n0(n).  The noisy 

measurement, d(n), acquired in the data channel is a result of superimposition of the desired signal, 

x(n) and a manifestation of the reference acoustic noise, n(n).  Equation (4) provides time domain 

model for the noisy measurement.  

d(n) = x(n) + n(n) (4) 

Here, d(n) and n0(n) were passed through an initialization block that decimated the signals 

from 10 kHz to 1 kHz and then segmented to 2 second long frames with 80% overlap.  Each data 

frame, di(n), where i is the frame index, and noise frame, n0i(n), was windowed using a rectangular 

window and transformed into the frequency domain using the Discrete Fourier Transform (DFT).  

Then, each incoming frequency transformed data frame, 𝐷𝐷𝑖𝑖(𝑓𝑓), and noise frame, 𝑁𝑁0𝑖𝑖(𝑓𝑓), were 

subjected to magnitude spectral subtraction to provide an estimate of the desired signal |𝑋𝑋�𝑖𝑖(𝑓𝑓)| as 

shown in equation (5). 

�𝑋𝑋�𝑖𝑖(𝑓𝑓)� =  |𝐷𝐷𝑖𝑖(𝑓𝑓)|  −  �𝑁𝑁0𝑖𝑖(𝑓𝑓)� (5) 

Equation (5) resulted in processing distortions by producing negative values in the 

estimated magnitude spectrum owing to the variations of the noise channel spectrum.  Hence, the 

estimated magnitude spectrum, |𝑋𝑋�𝑖𝑖(𝑓𝑓)|, is processed by the spectral flooring function to prevent 

negative values in the estimated magnitude.  Equation (6) presents the function that was used to 

perform spectral flooring [66, 71]. 

|𝑋𝑋�𝑖𝑖(𝑓𝑓)|= �0.01|𝐷𝐷𝑖𝑖(𝑓𝑓)|        if   |𝑋𝑋�𝑖𝑖(𝑓𝑓)| < 0
|𝑋𝑋�𝑖𝑖(𝑓𝑓)|               otherwise

 (6) 
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The spectral floored magnitude spectrum estimate,|𝑋𝑋�𝑖𝑖(𝑓𝑓)|, is combined with the phase of 

the noisy signal spectrum, θ(𝐷𝐷𝑖𝑖(𝑓𝑓)), and then transformed into the time domain via the Inverse 

DFT (IDFT).  Finally, concatenating the outputs from the IDFT yielded an estimate of the desired 

signal 𝑥𝑥�(𝑛𝑛). 

4.2.1.2 Adaptive Noise Cancellation 

Adaptive noise cancellation is another widely used multichannel noise cancellation 

technique to remove acoustic noise interference.  In particular, the current research evaluates the 

performance of the various adaptive noise cancellation algorithms in such a configuration where a 

part of the reference acoustic noise is assumed to be superimposed onto the data channel as shown 

in Figure 4.4.  In order to determine the best noise cancellation technique, the performance of the 

LMS, sign LMS, normalized LMS and fast block LMS algorithms were compared with spectral 

subtraction. 

 
Figure 4.4: Block Diagram Representation of the Implemented Adaptive Noise Cancellation 

Algorithm. 

The configuration considered in Figure 4.4 is similar to the case that was considered for 

the spectral subtraction based noise cancellation; where the noisy measurement, d(n), acquired in 

the data channel is a result of superimposition of the desired signal, x(n), and a manifestation of 



www.manaraa.com

38 
 

the reference acoustic noise, n(n), as shown in equation (4).  It is the assumption that the desired 

signal, x(n), is statistically independent of n(n) and n0(n); n(n) and n0(n) are correlated in some 

sense.  In this algorithm, both d(n) and n0(n) were passed through an initialization block that 

decimated the signals from 10 kHz to 1 kHz and then normalized.  The normalized noise, n0(n), is 

filtered to produce 𝑛𝑛�(𝑛𝑛), an estimate of n(n) using minimum mean square estimation.  Equations 

(7), (8), and (9) represent filtering, error computation and weight update operations of the LMS 

based adaptive noise cancellation algorithm, respectively. 

𝑛𝑛�(𝑛𝑛) = 𝑤𝑤𝑇𝑇(𝑛𝑛) ∗  𝑛𝑛0(𝑛𝑛) (7) 
𝑒𝑒(𝑛𝑛) = 𝑑𝑑(𝑛𝑛) −  𝑛𝑛�(𝑛𝑛) (8) 

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) + µ 𝑥𝑥(𝑛𝑛)𝑒𝑒(𝑛𝑛) (9) 

In equation (7), 𝑤𝑤𝑇𝑇(𝑛𝑛) represents the computed coefficients of the adaptive filter based on 

the order (M), µ provides the step size for the weight update operation, e is the computed error 

which is considered to be the noise free estimate 𝑥𝑥�(𝑛𝑛) and n is the sample index.  In the current 

study, M was set to 300 and µ was set to 0.01 for LMS.  Sign LMS and normalized LMS were 

implemented using (10) and (11), respectively. 

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) + µ 𝑠𝑠𝑠𝑠𝑔𝑔𝑛𝑛(𝑥𝑥(𝑛𝑛))𝑒𝑒(𝑛𝑛) (10) 

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) +
µ2

 𝛥𝛥 + 𝜎𝜎𝑛𝑛0(𝑛𝑛)
2  𝑥𝑥(𝑛𝑛)𝑒𝑒(𝑛𝑛) (11) 

In equation (10), sign represents a standard signum function. In equation (11), Δ is a 

constant and σ is the standard deviation of n0(n) which depends on the order of the filter.  For sign 

LMS, M was set to 300 and µ was set to 0.01.  For normalized LMS, M was set to 300, µ was set 

to 0.3 and Δ to 0.1.  The block LMS was implemented using a Fast Fourier Transform (FFT) based 

algorithm as described in [72].  The µ was set to 0.5, the block size and M were set to 300, the 

forgetting factor (γ) and initial average power estimate (P) were set to 0.1. 
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4.2.1.3 Performance Comparison of Noise Cancellation Algorithms 

In order to assess the performance of the implemented noise cancellation techniques, 

evaluation metrics based on the NF and the SNR estimated averages were computed after 

application of each noise cancellation technique.  The average of NF is estimated between the 

corresponding variances (σ2) of d(n) and 𝑥𝑥�(𝑛𝑛). Prior to computing the averages of NF and SNR, 

an estimate of the noise 𝑛𝑛�(𝑛𝑛) is computed by subtracting 𝑥𝑥�(𝑛𝑛) resulting from the noisy 

measurement, d(n).  Then, the SNR is estimated between the corresponding variances (σ2) of noise 

free estimate 𝑥𝑥�(𝑛𝑛) and 𝑛𝑛�(𝑛𝑛).  It should be noted that, d(n), 𝑥𝑥�(𝑛𝑛) and 𝑛𝑛�(𝑛𝑛) were segmented into 2 

second long frames with 80% overlap before estimating the averages of NF and SNR. In the 

equations (12) and (13) i, v, and l represent frame index, number of frames  and frame length 

respectively. NF is the ratio of powers of the noisy signal, di(n), to the noise free signal, 𝑥𝑥�𝑖𝑖(𝑛𝑛). On 

the other hand, SNR is the ratio of powers of noise free signal, 𝑥𝑥�𝑖𝑖(𝑛𝑛), to the estimated noise, 𝑛𝑛�𝑖𝑖(𝑛𝑛). 

NF = 1
𝑣𝑣

 ∑ 10 log �
𝜎𝜎�𝑑𝑑𝑖𝑖(𝑛𝑛)�
2

𝜎𝜎� 𝑥𝑥�𝑖𝑖(𝑛𝑛)�
2 �𝑣𝑣

𝑖𝑖=1  (12) 

SNR = 1
𝑣𝑣

 ∑ 10 log �
𝜎𝜎� 𝑥𝑥�𝑖𝑖(𝑛𝑛)�
2

𝜎𝜎� 𝑛𝑛�𝑖𝑖(𝑛𝑛)�
2 �𝑣𝑣

𝑖𝑖=1  (13) 

Table 4.1 shows the estimated averages of NFs and SNRs corresponding to the spectral 

subtraction, LMS, sign LMS, normalized LMS and fast block LMS algorithms respectively.  

Lower value of the estimated NF and higher value of estimated SNR are indicative of greater 

proportion of noise being removed. Hence in comparison, the algorithm that provides a lowest 

value of NF and a highest value of SNR is considered to be performing better. 

Table 4.1: Estimated Average NFs and SNRs.  
Noise Cancellation  NF(dB) SNR(dB) 
Spectral Subtraction 20.54 -8.16 

LMS 25.43 -9.75 
Sign LMS 22.46 -8.48 

Normalized LMS 25.12 -9.76 



www.manaraa.com

40 
 

Table 4.1 (Contd.). 
Fast Block LMS 25.38 -9.20 

After application of spectral subtraction, Ptotal shows an average estimated SNR of -8.16 

dB. Figure 4.5a shows the noisy measurement that was recorded at a critical care setting using the 

G.R.A.S 46 AD microphone. The noisy data is corrupted mainly due to acoustical artifacts 

generated from background speech, critical and emergency care instruments such as mechanical 

ventilator and the patient monitors. Specifically, it was observed that a very low frequency periodic 

noise due to a combination of hissing and thumping sounds was generated by the mechanical 

ventilator. This periodic artifact left a significant impact on the SNR of the measurement which 

can be seen around 10 and 50 seconds in Figure 4.5a. Spectral subtraction also provided 

considerable attenuation to the artifacts (see Figure 4.5b).  On the other hand, the average estimated 

SNR of Ptotal after adaptive noise cancellation based on LMS and sign LMS were found to be -9.75 

and -8.48 dBs, respectively.  Figures 4.5c and 4.5d show the resultant outputs of LMS and sign 

LMS.  With respect to normalized LMS and fast block LMS, the post noise cancellation average 

estimated SNR were found to be -9.76 and -9.20 dBs, respectively. Specifically, normalized LMS 

and fast block LMS have not provided considerable artifact attenuation in comparison to other 

noise cancellation techniques. See Figures 4.5e and 4.5f.  

Though sign LMS quantitatively provides almost similar performance to that of spectral 

subtraction, spectral subtraction outperformed the sign LMS in attenuating the artifacts and 

providing better estimates of NF and SNR especially in the periods of d(n) where the artifact is not 

present. Thus, it was concluded that the spectral subtraction provides efficient performance in 

estimating x(n) from d(n) compared to the LMS, sign LMS, normalized LMS and fast block LMS 

algorithms. 
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Figure 4.5a: Noisy Measurement. Figure 4.5b:  SNR Enhanced Signal Using 

Spectral Subtraction. 

  
Figure 4.5c: SNR Enhanced Signal Using 

LMS Based ANC. 
Figure 4.5d: SNR Enhanced Signal Using 

Sign LMS Based ANC. 

  
Figure 4.5e:  SNR Enhanced Signal Using 

Normalized LMS Based ANC. 
Figure 4.5f: SNR Enhanced Signal Using 

Block LMS Based ANC. 
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4.2.2 Source Separation 

The noise reduced signal is then processed using the source separation block. This single 

channel observation is decomposed into various levels using discrete wavelet transform where 

only vital bio-signals of interest are then hard thresholded and reconstructed back. The details of 

these blocks of source separation are described in the following subsection. 

4.2.2.1 Wavelet Based Source Separation 

Preliminary results of Hashiodani et al. [73] indicated that analyzing the sounds acquired 

from an arterial body site can potentially include information with respect to bio-signals like heart 

sounds, sounds of blood stream, and respiratory sounds. As a result, it was assumed that the 

analysis of enhanced Pdynamic, i.e., sound of blood flow, would provide information with respect to 

bio-signals like heart and respiratory sounds.  In this context, studies [74, 75] that used time-

frequency transformation techniques to localize heart sounds from respiratory sounds have shown 

promising results especially for single channel source separation.  Therefore, in this study a 

wavelet based MRA has been implemented in order to unmask the underlying bio-signals.  In 

MRA, the given signal 𝑥𝑥�(𝑛𝑛), i.e., SNR enhanced Pdynamic is decomposed into various levels of 

approximation (A) and detail (D) coefficients according to equation (14). 

𝐴𝐴𝑚𝑚(𝑛𝑛)  = < 𝑥𝑥�(𝑛𝑛),𝜑𝜑𝑚𝑚𝑚𝑚(𝑛𝑛) > 
(14) 𝐷𝐷𝑚𝑚(𝑛𝑛)  = < 𝑥𝑥�(𝑛𝑛),𝜓𝜓𝑚𝑚𝑚𝑚(𝑛𝑛) > 

where <.> operator represents inner product, m represents the decomposition level, k represents 

the translation, 𝜓𝜓 represents the mother wavelet with R vanishing moments and 𝜑𝜑 corresponds to 

its scaling function.  In order to obtain the approximations and details of the subsequent levels, the 

wavelet (𝜓𝜓) and scaling (𝜑𝜑) functions are represented as recursive functions given in equation (15) 

[76]. 
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𝜓𝜓(n) = ∑
∞

−∞=p
h(p)  𝜑𝜑(2n – p) 

(15) 
𝜑𝜑(n) = ∑

∞

−∞=p
g(p)  𝜑𝜑(2n – p) 

In equation (15), h(p) and g(p) are impulse responses of low pass and high pass quadrature 

mirror filters, respectively. The approximation and detail coefficients at each level are a result of 

the convolution between the signal 𝑥𝑥�(𝑛𝑛) with the impulse responses of h(p) and g(p).  The 

approximation coefficients obtained at each level are down sampled by a factor of two and 

decomposed further into finer approximations and details.  This process was continued until all 

the levels of the MRA were reached.  After all the approximation and detail coefficients were 

obtained from the MRA, the coefficients corresponding to all the scales were set to zero except for 

the coefficients of the interest in a particular level.  This hard thresholding process has been 

adopted in this current study to unmask bio-signals in the wavelet domain.  Finally, after 

application of the thresholding, the new coefficients were reconstructed back into the time domain.  

Both the acoustic heart and respiratory pulses exhibit a different behavior in the wavelet domain 

in the sense that the acoustic heart pulses are highly dynamic and non-stationary; on the other hand, 

acoustic respiratory pulse is relatively slow varying [75]. Therefore, the chosen mother wavelet 

(𝜓𝜓) should provide a reasonably good low and high frequency resolution to the underlying bio-

signals of 𝑥𝑥�(𝑛𝑛) through compact support.  Additionally, the lower cutoff frequency of the pressure 

field microphone was set to 3.15 Hz.  Therefore, any underlying bio-signals of interest that 

contained frequency components below 3.15 Hz would have been attenuated and appeared as 

discontinuities in the measured pressure data.  As a result, the chosen 𝜓𝜓 need to be able to detect 

the presence of hidden discontinuities.  Finally, the 𝜓𝜓 should be orthogonal to avoid phase 
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distortions from the transformation.  All the requirements of the current study were satisfied by 

the Coiflet wavelet with four vanishing moments. 

4.2.2.2 Results of Source Separation 

The estimate 𝑥𝑥�(𝑛𝑛) from spectral subtraction was subjected to MRA using fourth order 

Coiflet wavelet.  The level of decomposition at which the detail coefficients were retained was 

bio-signal dependent and thus for acoustic heart pulses the coefficients of interest were identified 

at level four and for acoustic respiratory pulses the coefficients of interest were identified at level 

ten.  Following the ten level MRA decomposition, coefficients of interest in a particular level were 

retained and a hard threshold was applied to coefficients corresponding to other scales.  The 

acoustic heart and respiratory pulses masked in 𝑥𝑥�(𝑛𝑛) were extracted by performing a hard 

threshold on MRA coefficients, simultaneously retaining details coefficients of level four (D4), 

level ten (D10) and reconstructing them individually back into the time domain. Figures 4.6a and 

4.6b show the extracted acoustic heart and respiratory pulses obtained after reconstruction. 

 
Figure 4.6a: Extracted Acoustic Heart Pulses.  
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Figure 4.6b: Extracted Acoustic Respiratory Pulses. 

The acoustic heart pulses were benchmarked by computing average heart rate in beats per 

minute (bpm) and comparing it to the average of heart rate that was recorded prior and post-

acquisition of the noisy measurement.  Since the acoustic respiratory pulse is a slowly varying 

waveform, further analysis was done on a relatively large time period.  A first order sample 

difference was computed in order to identify the presence of any discontinuities that may have 

been present due to the bandlimited frequency response of the pressure field microphone. The 

corresponding results are shown in Figure 4.7. 

From Figure 4.7, it can be observed that the slow moving respiratory signal was attenuated 

and discontinuities were introduced due to this attenuation. The number of discontinuities present 

were in direct correlation to the average respiratory rate in breaths per minute (rpm) acquired prior 

and post the d(n) acquisition for the purpose of benchmarking. The discontinuities can also be 

identified using MRA. The extracted acoustic respiratory pulse was decomposed into first level 

approximation and detail coefficients using fourth order Coiflet wavelet to obtain similar results. 
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Figure 4.7: Acoustic Respiratory Pulse and the Corresponding Discontinuities. 

4.2.2.3 Validation 

Table 4.2 presents the error analysis results of computed heart and respiratory rates 

benchmarked with modalities obtained using conventional devices for all the venous and arterial 

blood flow dynamics given in Table 3.1. 

Table 4.2: Error Analysis Results of Heart Rate and Respiratory Rate Benchmarking. 

Index 
Heart Rate (bpm) Respiratory Rate (rpm) 

Recorded 
Value 

Computed 
Value 

Error 
(± %) 

Recorded 
Value 

Computed 
Value 

Error 
(± %) 

1a 95 99 
3.78 

10 10.5 
5 5a 110.5 102 10 10 

6a 128 120 10 11 
1b 218 210 

0.59  
10 11.5 

15 5b 216.5 217.5 10 11.5 
6b 222 225 10 11.5 
2b 108.5 105 

1.87 
10 11 

13 3a 116 112.5 10 11.5 
4b 96.5 97.5 10 11.5 
2a 179 180 

2.38 
10 10 

5 3b 200 195 10 11 
4a 204.5 194.6 10 10.5 

The error percentage computed by benchmarking with conventionally measured modalities 

validate the extracted acoustic heart and respiratory pulses.  From Table 4.2, it was observed that 
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the novel catheter multiscope measures the heart rate with an estimated error less than 4%, i.e., 

with higher precision when compared to the current heart rate monitors [77].  With respect to the 

respiratory rate, the proposed catheter multiscope recorded the largest estimation error of 15% (1.5 

rpm), which is within the acceptable tolerance and can be regarded as a comparable measurement 

to an optimized respiratory rate monitor [78]. 

4.3 Continuous Blood Pressure Computation Framework 

Continuous blood pressure was extracted from Ptotal following a novel signal processing 

framework shown in Figure 4.8.  Even though static pressure was equalized, it was observed that 

measured Ptotal consisted of traces of Pstatic due to the insufficient discharge time constant of the 

pressure field microphone.  Making use of this limitation, normalized blood pressure was 

extracted, i.e., Pstatic was extracted by computing the local mean for every 25 ms from the measured 

Ptotal.  This local mean computation effectively compressed the number of data samples of Ptotal 

from 10000 samples to 40 samples for each second.  The segment length for mean computation 

was deliberately chosen to be 25 ms since all the harmonics of blood pressure signal are present 

between 0 to 20 Hz.  Extraction of Pstatic from Ptotal resulted in normalized blood pressure. The 

computed normalized blood pressure was further validated by establishing comparison between 

the human and animal blood pressure data. This comparison was accomplished by estimating the 

magnitude squared coherence between the normalized blood pressure data derived from recording 

index 1a and the Physionet arterial blood pressure derived from a mutli-parameter waveform 

database using Welch’s overlapped segment averaging.  

 

 



www.manaraa.com

48 
 

 
Figure 4.8: Overview of Continuous Blood Pressure Computation Framework. 

4.3.1 Blood Pressure Estimation and Validation 

From the extracted normalized blood pressure, it is not possible to directly estimate the 

systolic and diastolic pressure. To estimate pressures, the pressure field microphone attenuation 

factors k1, k2 corresponding to systolic and diastolic pressures were first estimated using the 

regression model shown in equation (16), where sys is the systolic pressure, dia is the diastolic 

pressure, M is the mean arterial pressure obtained using the conventional devices, P is the local 

maxima and V is the local minima of the normalized blood pressure obtained after compression of 

Ptotal. k1 and k2 are the sensor attenuation factors corresponding to the systolic and the diastolic 

pressures. 

sys = k1 . (P + M) (16) dia = k2 . (V + M) 

The regression model first estimates the systolic and diastolic attenuation factors using the 

blood pressure data obtained from conventional instruments, i.e., M, sys and dia.  The systolic and 

diastolic pressures were then estimated using the computed regression model.  The sensor 

attenuation factors k1 and k2 were computed using the normalized blood pressure data for recording 

indices 1a to 6b.  The factors k1 and k2 were found to be 1.1078 ± 0.0658 and 0.8854 ± 0.0449, 

respectively.  Later, the mean values of the obtained k1 and k2 are used to compute average systolic 

and diastolic pressures using equation (16) for all the recording indices from 1a to 6b as shown in 

Table 4.3. 
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Table 4.3: Error Analysis Results of Systolic and Diastolic Pressures Benchmarking. 

Recording 
Index 

Systolic Pressure (mmHg) Diastolic Pressure (mmHg) 
Recorded 

Value 
Computed 

Value 
Error 
(± %) 

Recorded 
Value 

Computed 
Value 

Error 
(± %) 

1a 84.5 82.5 
3 

63 65.96 
1.5 5a 45 41 31.5 32.6 

6a 39 39.9 34 31.9 
1b 189.5 196.6 

5 
152.5 157.2 

1.9 5b 181 187.8 152.5 150.1 
6b 141 152.9 133 122.2 
2b 52.5 49.9 

5.6 
39 39.8 

4.2 3a 44.5 42.1 30.5 33.6 
4b 51 47.6 37.5 38.1 
2a 124 135.7 

4.1 
110 108.5 

2.4 3b 171.5 175.6 143 140.3 
4a 186.5 190.5 158 152.3 

From Table 4.3, it can be observed that the novel catheter multiscope is able to predict 

systolic pressures with an estimated average error rate less than 6% and diastolic pressures with 

an estimated average error rate less than 5% in comparison to the current gold standard.  It should 

be noted that, at this point results obtained for continuous blood pressure are considered to be 

preliminary since the systolic and diastolic pressures have been approximated from a sensor 

attenuation factor model. Additional benchmarking was accomplished with a human blood 

pressure data to confirm the validity of described blood pressure estimation approach. Details are 

provided in Appendix A. 
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CHAPTER 5: APPLICATION CASE STUDIES 
 

5.1 Sinus Rhythm Pattern Recognition3. 

5.1.1 Background 

The centers for disease control and prevention estimates that more than 600,000 people die 

of heart diseases every year in United States [79]. In addition to this overwhelming number of 

heart disease cases, critical care units in the United States have reported a 90% false arrhythmia 

alarm rate. Blood pressure, heart and respiratory rates are among other vital bio-signals that are 

acquired and monitored in critical care units [80]. No other comparable studies in the literature 

have described a diagnostic system that is capable of providing multiple vital bio-signals and 

detecting an arrhythmia. Hence, our motivation is to develop a multiple bio-signal feature 

extraction and pattern recognition framework for biomedical acoustic signals. In order to 

demonstrate the feasibility of the developed framework, preliminary results are presented by 

processing the acoustic heart pulses of the catheter multiscope  

The blood flow sounds collected from various body sites in the current case study under 

the conditions of normal and abnormal sinus rhythms are analyzed using an extended version of 

the previously validated signal processing framework. See Figure 4.2. The extended framework, 

initially extracts the acoustic heart and respiratory pulses from the measured blood flow sounds  

  

                                                           
3A preliminary version of the content presented in Chapter 5, section 5 has been published in proceedings of 2017 
International Conference of Software and Smart Convergence [125] and NIH-IEEE 2017 Special Topics conference 
on Healthcare Innovations and Point of Care Technologies: Technology in Translation [124]. 
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using a noise cancellation and wavelet source separation technique based preprocessing. Then, the 

extracted acoustic heart pulses are post processed to recognize the patterns of the sinus rhythm 

based on a novel feature extraction technique and cluster analysis. The developed framework was 

qualitatively and quantitatively validated by providing visual results of the clustering and by 

computing the clustering accuracy, sensitivity and specificity. The cross validation results show 

that the developed framework consistently recognizes the patterns of the sinus rhythms with an 

accuracy rate of 94.37%. 

5.1.2 Pattern Recognition Framework 

Analysis and processing of the acquired dynamic pressure, i.e., blood flow sounds, was 

viewed as a problem that requires a combination of preprocessing, feature extraction and 

clustering. Since the measurement was made in a noisy clinical setting, measurement of this blood 

flow sound was interfered by other acoustical sources present in the setting. Thus, in order to 

extract the bio-signals with fidelity from this measurement, noise had to be reduced using a spectral 

subtraction based noise cancellation technique. Next, the noise reduced signal was preprocessed 

with the wavelet source separation in order to extract acoustic heart and respiratory pulses. Later 

the extracted acoustic heart pulses were segmented; features were extracted and the pattern was 

then recognized from the extracted features. The developed feature extraction and pattern 

recognition technique was able to independently cluster normal and abnormal sinus rhythm 

patterns of the acoustic heart pulses. Figure 5.1 shows the developed signal analysis and processing 

framework for biomedical acoustic signals. The acoustic heart pulses obtained by processing the 

signals of the catheter multiscope, as described in section 4.2 were processed further through 

feature extraction and pattern recognition. The features multiscale energy was extracted and then 

its pattern was recognized using K-Means clustering as explained in the following sections. 
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Figure 5.1: Biomedical Acoustical Signal Analysis and Processing Framework. 

5.1.2.1 Feature Extraction and Cluster Analysis 

5.1.2.1.1 Multiscale Energy 

A Continuous Time Wavelet Transform (CTWT) based feature called multiscale energy 

was developed and computed for each segment of the acoustic heart pulse. The normalized CTWT 

of a continuous signal h(t) is given by equation (17). 

Wh;𝜓𝜓(τ, s)    =  
1
√s

� h(t) ∗ 𝜓𝜓∗ �
t − τ

s
�dt

                     

∞

−∞
 (17) 

Here W is the computed continuous wavelet transform, h(t) is a segment of the acoustic 

heart pulse, s is the scale coefficient associated to stretching or compression of the signal in time, 

τ is the translation parameter, 𝜓𝜓 is the chosen mother wavelet [81]. The Multiscale Energy (ME) 

is computed using equation (18).  

𝑀𝑀𝑀𝑀(𝑠𝑠) =  �� Wh;𝜓𝜓(τ, s)�
2

𝜏𝜏

 (18) 

The ME feature is computed at each scale of the CTWT of h(t) using Coiflet wavelet with 

four vanishing moments as chosen mother wavelet. 

5.1.2.1.2 K-Means Clustering 

K-means clustering algorithm was applied to ME features of the acoustic heart pulse 

segments for sinus rhythm pattern recognition. The following procedure adapted from [82] is 

implemented to cluster the ME features: 

1. Input the computed ME feature vector set, v, of the extracted acoustic heart pulses to K-

Means algorithm. 
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2. Randomly select the initial cluster centers from the feature set whose dimension is nb1 x 

nb2 x np x fp. Here, nb1 represents the number of body sites, nb2 is the number measurements 

taken at each body site, np is the number of segments and fp represents the number of 

features per segment or feature index, i.e., features computed based on the scale vector of 

the CTWT.  

3. Assign the features that are closest to the cluster centroids according to the Euclidean 

distance function shown in equation (19) to the cluster number (j) depending on the 

maximum number of clusters, K, and nb1 x nb2 x np. 

� � �𝑣𝑣𝑝𝑝
𝑗𝑗 −  𝑐𝑐𝑗𝑗�

2
𝑛𝑛𝑏𝑏1 × 𝑛𝑛𝑏𝑏2 × 𝑛𝑛𝑝𝑝

𝑝𝑝=1

𝐾𝐾

𝑗𝑗=1

 (19) 

4. Recompute the centroids based on the formed new clusters.  

5. Iteratively repeat the steps 2, 3 and 4 until the Euclidean distance function reaches 

convergence. 

5.1.3 Results and Discussion 

After preprocessing the blood flow sounds, further analysis was done on the extracted 

acoustic heart pulses corresponding to normal and abnormal sinus rhythms. The extracted acoustic 

heart pulses were segmented into three second long segments and the ME features were computed 

for each segment of the acoustic heart pulses. It has to be noted that, the number of body sites is 

 
Figure 5.2: Feature Extraction and Pattern Recognition Dimensionality. 
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2; the number of measurements at each body site, nb2, is 2; the number of segment instances, np, is 

40 and the number of features per segment, fp, is 116.  Figure 5.2 is provided to show the 

dimensionality of the data when feature extraction and pattern recognition is performed. 

Also, prior clustering, features corresponding to different body sites and sinus rhythm 

patterns were randomly grouped to obtain a final feature set with dimensions resulting in (2 x 2 x 

40) x 116, where 2 x 2 x 40 is the segment index corresponding to acoustic heart pulses of both 

normal and abnormal sinus rhythms of carotid artery and jugular vein. Figures 5.3a and 5.3b show 

the ME features computed for acoustic heart sounds of normal and abnormal sinus rhythm 

segments of the carotid artery. In Figures 5.3a and 5.3b, each color represents the features (1x116) 

per segment. Figures 5.3a and 5.3b show the ME features computed for acoustic heart sounds of 

normal and abnormal sinus rhythm segments of the carotid artery. In Figures 5.3a and 5.3b, each 

color represents the features (1x116) per segment.  

The computed ME features are scaled and separated into 2 clusters using Euclidean 

distance based K-means clustering algorithm. The cluster number (K) has been selected based on 

the average silhouette coefficient (Cp) computation given in [83]. The Cp for the data used in the 

 
Figure 5.3a: ME of Acoustic Heart Pulse Corresponding to Normal Sinus Rhythm. 
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current case study was determined to be 2 which can be associated to clusters corresponding to 

normal and abnormal sinus rhythms. Figure 5.4 shows the qualitative results of K-means 

clustering. 

 
Figure 5.4: Qualitative Results of K–Means Clustering. 

It can be observed from Figure 5.4 that K-means provides a satisfactory sinus rhythm 

pattern recognition by separating the ME features into two different clusters. To further validate 

 
Figure 5.3b: ME of Acoustic Heart Pulse Corresponding to Abnormal Sinus 

Rhythm. 
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the developed ME features and the clustering framework, quantitative factors such as sensitivity, 

specificity and accuracy have been computed from a cross validation based confusion matrix. 

Cross validation was accomplished by mixing the final feature set and performing clustering on 

the mixed feature set. It has to be noted that the clustering was accomplished by randomizing the 

feature set mixture up to 10 times. Finally, average values of the quantitative factors of the 

confusion matrix were computed. Table 5.1 presents the averaged results of the confusion matrix 

of the cluster analysis. 

Table 5.1: Confusion Matrix of the Cluster Analysis. 
np = 160 Sinus Rhythm: Normal Sinus Rhythm: Abnormal 

Predicted: Normal Sinus 
Rhythm TN = 73 FN = 2 

Predicted: Abnormal 
Sinus Rhythm FP = 7 TP = 78 

The confusion matrix shown in Table 5.1 was computed for 160 segment instances. The 

segment instances corresponding to the normal sinus rhythm was defined as True Negative (TN), 

i.e., cluster number 0 and the abnormal sinus rhythm was defined as True Positive (TP), i.e., cluster 

number 1. Sensitivity and specificity were computed from Table 2 to show that the developed 

framework recognizes the patterns of the normal sinus rhythm with 91.25% precision and 

abnormal sinus rhythm with 97.5% precision. In addition, it was also noted that the overall ability 

of the developed framework in recognizing the patterns of the sinus rhythms was accurate to 

94.37%. 
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5.2 Fetal Phonocardiography4 

5.2.1 Background 

The Centers for Disease Control and Prevention (CDC) estimates that more than one 

million fetal deaths occur in the United States per year [84]. Complications such as preterm 

delivery, hypoxia, intrauterine growth retardation and others, not only lead to fetal distress and 

neonatal death but also can cause risks to maternal health. There is a lesser knowledge about the 

incidence, etiology and prevention strategies for these complications; therefore it is critical to 

monitor the status of both fetal and maternal health throughout pregnancy. Consequently, 

Electronic Fetal Monitoring (EFM) was introduced in 1960s as a valuable tool for diagnosing Fetal 

Heart Rate (FHR) during the antepartum and intrapartum periods of pregnancy [85].  Today, EFM 

is used in 90% of the labor diagnosis procedures in the United States [86] and includes 

Electrocardiography (ECG), Phonocardiography (PCG), Pulse Oximetry, Magnetocardiogram 

(MCG) and Tocodynamometer. Organizations such as the International Federation of Gynecology 

and Obstetrics (FIGO), the American College of Obstetricians and Gynecologists (ACOG), the 

National Institute of Child Health and Human Development (NICHHD), the Royal College of 

Obstetricians and Gynecologists (RCOG), and the National Institute of Clinical Excellence (NICE) 

have standardized the use of EFM in conjunction with Maternal Uterine Contractions (MUC) 

known as Cardiotocography (CTG) to optimize the outcomes for the mother and the new born 

infant [87, 88].   

Fetal Phonocardiography (FPCG) was discovered by the interventions of Marsac, 

Kergardec and Kennedy during the 17th century [89, 90].  Although FPCG was discovered many 

                                                           
4The contents in chapter 5, section 5.2 have been published in Journal of Biomedical Signal Processing and Control 
[117] and proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society [126] 
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years ago, interest in this research has only occurred over the last few years. Currently, the 

application of FPCG is limited to FHR analysis and is seen as a noninvasive means for data 

acquisition; it is only used as a secondary diagnosis tool in the antepartum, and has never been 

utilized for complete clinical diagnosis.  There are few reasons as to why FPCG is not clinically 

accepted for a complete diagnosis:  First, the FPCG is very noisy, owing to the fact that the 

acquired signal is a mixture of fetal acoustic components, maternal acoustic components and many 

other noises. Second, the characteristics of the aforementioned components are highly dependent 

on the location of data acquisition, gestational age, fetal and maternal positions which result in 

signal non-stationarity; finally, the non-linear transmission medium dynamically morphs all the 

components to result in a narrow band signal.  Today’s standard of care in fetal monitoring suspects 

that the fetal heart rate is predictive of pregnancy complications [91].  As a consequence, EFM 

relies predominantly on FHR and does not incorporate the characteristics of the FPCG waveform 

in the assessment of fetal and maternal outcomes.  The primary reason for the exclusion of this 

information from clinical practice is that the technology to measure the Fetal Heart Sounds (FHS) 

reliably is not yet available.  Secondly, the existing signal processing techniques are unable to 

deliver a FHS signal from the acquired FPCG signal without considerable distortion.  

5.2.2 State-of-the-Art in Fetal Monitoring 

The technologies available to accomplish fetal monitoring are FPCG, Fetal Ultrasound, 

Fetal Electrocardiography (FECG) [20, 92], Fetal Magnetocardiography (FMCG) [93], Fetal Pulse 

Oximetry/Photoplethysmography (FPPG) [94] and Tocodynamometer/Intrauterine Pressure 

Catheter (IUPC) [95].  Among all these methods, ultrasound is regarded as the gold standard in 

fetal monitoring and is widely used during pregnancy and labor.  When ultrasound is used to obtain 

biophysical profiles and images, typically during weeks 18 – 22, is known as echocardiography 
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[96]; when ultrasound is used in conjunction with tocodynamometer/IUPC, typically employed 

during labor and antepartum to acquire FHR and UC, is known as cardiotocography (CTG) [97].  

Continuous fetal monitoring using ultrasound, particularly during labor, is highly challenging for 

two main reasons: the transducer of the ultrasound’s data acquisition system needs frequent 

realignment, and the constant presence of a highly trained operator during data acquisition is 

required [98, 99].  Ultrasound technique is highly sensitive to movement, hence any maternal and 

or fetal movement is known to affect the ultrasound’s beam reflection [100].  Also, long term and 

ambulatory fetal monitoring using ultrasound is inappropriate due to complexity of the 

instrumentation [100, 101].  Studies [101, 102, 103, 104] have shown that long-term and short-

term variability of FHR obtained from ultrasound data are not as precise when compared to other 

techniques.  Even if all the limitations of the ultrasound technique are rectified, ultrasound still 

exposes the fetus to radiation.  The safety of the fetus from this radiation exposure remains a 

concern, due to the lack of evidence in the current literature [105, 106, 107, 108, 109, 110].  

Besides these limitations, data obtained from FPCG contains more information on cardiac 

abnormalities and pathologies than ultrasound in relation to fetus and mother [111]; hence, the 

consideration of ultrasound as the gold standard is debatable. Most of the fetal cardiac 

abnormalities are believed to have some manifestation on the morphology of the FECG and the 

FMCG.  However, they exhibit a poor Signal to Noise Ratio (SNR) due to unresolved maternal 

and bio-signal interferences [102, 103] and they have a complex instrumentation [102, 112, 113].  

Traditionally, FECG is known for producing the highest quality measurement of FHR, but it has 

been shown within the literature that FHR from a FPCG signal is equally as reliable as FECG 

[114].  The use of FPPG is also restrained, as the light emitted from the signal is known to increase 

the fetal temperature, has a poor SNR due to the presence of ambient light and it has an optical 
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shunt problem [115].  Henceforth, the current standards of fetal monitoring are unreliable 

particularly during labor [116, 19].  On the other hand, though the FPCG has potential for fetal 

monitoring during first and second trimesters as well as labor, its usage as a secondary diagnosis 

tool is limited to antepartum as it suffers from low SNR due to maternal signal interference, 

maternal motion, nonlinear transmission medium and limitations in the existing data acquisition 

approaches and data acquisition systems.  If the existing data acquisition approaches, data 

acquisition systems and signal processing techniques are improved, FPCG is capable of addressing 

all the limitations that the other methods present.  Based on this observation, motivation for 

addressing the gaps of fetal monitoring through FPCG was found. 

Acquisition, analysis, and processing of fetal heart sounds from maternal body is known 

as FPCG.  The signal acquired at the transducer is a superimposition of various time varying 

acoustic and pressure components.  Essentially it consists of fetal acoustic and pressure 

components: Fetal Heart Sounds (FHS), Fetal Movements (FM) that include Fetal Respiration 

(FR), fetal hiccups, and body movements; maternal acoustic and pressure components: Maternal 

Heart Sounds (MHS), Maternal Organ Sounds (MOS) that include Maternal Respiration (MR), 

Maternal Uterine Contractions (MUC), Maternal Digestive Sounds (MDS), and Maternal Motion 

(MM); additional signal components that include Power Line Interference (PLI), Reverberation 

Noise (RN), Sensor and Background Noise (SBN).  These components provide invaluable 

diagnostic information about the fetal and the maternal health; however, its analysis and processing 

is rather challenging.  In particular, the FHS signal has low SNR as it gets attenuated due to 

transmission path losses, and also gets superimposed with other fetal, maternal and additional 

components.  Among all the components of FPCG, MHS overlap with FHS in both time and 

frequency domains.  Further, fetal position, maternal obesity, placental position and location of 
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data acquisition play an important role in determining the SNR of the FHS signal and henceforth 

the SNR of the FPCG.  For these reasons, denoising and recovering FHS from FPCG requires 

application of advanced signal processing algorithms.  

In the literature, various signal processing techniques have been described to denoise the 

FPCG ranging from simple digital filters to advanced source separation techniques [117].  Though 

filtering and other heuristic methods are computationally efficient, these methods are not able to 

completely reduce the MHS interference in FPCG. Consequently, to solve the problem of MHS 

interference, adaptive filtering and blind source separation techniques have been implemented.  

However, these techniques require data that is captured from multiple channels in order to 

successfully denoise the MHS from FPCG and thus when it comes to single channel FPCG, these 

techniques do not perform well.  Though specific blind source separation techniques have also 

been used to decompose FHS from a single channel FPCG, they fail to successfully retain time 

domain characteristics of the FHS, in particular FHR.  In summary, the proposed techniques suffer 

to efficiently eliminate both the in-band and out-of-band noise present within a single channel 

FPCG. 

In order to address these challenges, a single channel FPCG processing framework has 

been developed. This framework is capable of denoising the FPCG by accurately reconstructing 

FHS while efficiently removing the MHS and out-of-band interferences.  The proposed framework 

first enhances the SNR of the noisy FPCG by removing the out-of-band noise using a single 

channel enhanced spectral subtraction technique.  The performance of the implemented denoising 

algorithm is quantitatively assessed by computing Noise Factor (NF).  Then, the SNR enhanced 

FPCG is decomposed into FHS and MHS in time-scale domain using a wavelet based source 

separation as shown for the catheter stethoscope in Figure 4.2.  Finally, the recovered FHS and 
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MHS are quantitatively validated by computing FHR, Maternal Heart Rate (MHR) and comparing 

it to the standard values. 

5.2.3 Fetal Phonocardiogram Processing Framework 

Analysis and processing of a single channel FPCG signal was seen as a problem that 

requires a combination of noise cancellation and source separation for noise reduction and bio-

signal interference resolution.  The noise reduction technique was predominantly used to remove 

the out-of-band noise such as fetal movements, maternal organ sounds and additional components 

and in order to enhance the SNR of the noisy FPCG signal. A wavelet based source separation was 

implemented to decouple the MHS from FPCG, i.e., the in-band noise in order faithfully recover 

FHS.  Figure 5.5 illustrates the framework that was used to process the single channel FPCG data. 

The simulated fetal phonocardiogram signals are processed using similar noise cancellation and 

source separation algorithms described earlier in section 4.2 and as shown in the block diagram in 

Figure 5.5. The framework was validated using the simulated FPCG dataset extracted from the 

PhysioNet database [118] [25].  Single channel FPCG signals corresponding to various SNR 

conditions were subjected to the developed framework to assess its reliability. 

 
Figure 5.5: Fetal Phonocardiogram Processing Framework. 

5.2.3.1 Noise Cancellation  

In this case study, an enhanced spectral magnitude subtraction technique was implemented 

to remove the out-of-band noise superimposed onto the FPCG.  Fetal movements, maternal organ 

sounds and additional components are the major contributors of the out-of-band noise.  In the 

simulated FPCG dataset, the impulse responses of the out-of-band noise were identified to be either 
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Gaussian or impulse noise.  In particular, MDS, MR, FM and SBN were the sources of the 

Gaussian noise; MM and RN were the sources of the impulse noise.  The out-of-band noise is 

estimated and updated from the periods when the FHS and MHS are absent. 

The implemented spectral subtraction algorithm includes a data channel that consists of 

noisy FPCG data, d(n), and a noise channel that estimates an ensemble average of the out-of-band  

from the data channel, n(n).  The d(n) and the n(n) were passed through an initialization block that 

segmented to frames of length one second with 60% overlap between adjacent frames.  Each data 

frame, di(n), and noise frame, ni(n), where i is the frame index and n is the sample index, was 

windowed using a rectangular window and transformed into frequency domain using Discrete 

Fourier Transform (DFT). Then each incoming frequency transformed data frame, Di(f), and noise 

frame, Ni(f), was subjected to magnitude spectral subtraction to provide an estimate of SNR 

enhanced FPCG signal, �𝑋𝑋�𝑖𝑖(𝑓𝑓)�, as shown in equation (5). Then the estimated signal is post 

processed using equation (6) to remove nulls in the spectral domains before performing inverse 

DFT. 

5.2.3.2 Source Separation 

In this case study, a wavelet based Multiresolution Analysis (MRA) has been implemented 

in order to extract the FHS and MHS from the FPCG.  In MRA, the given signal, 𝑥𝑥�(𝑛𝑛), i.e., SNR 

enhanced FPCG is decomposed into various levels of approximation and detail coefficients.  The 

approximation and detail coefficients obtained after the MRA were hard thresholded based on the 

bio-signal of interest and reconstructed back into time domain.  The chosen mother wavelet should 

provide a reasonably good frequency resolution to FHS and MHS, through compact support.  The 

mother wavelet needs to be able to detect the presence of hidden discontinuities.  In addition, the 

wavelet should also be orthogonal to avoid phase distortions from the transformation. All the 
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requirements of the current case study were satisfied by the Coiflet wavelet with five vanishing 

moments.  In addition, qualitative correlation between Coiflet-5 wavelet and the heart sounds, fetal 

and maternal, is very high. 

5.2.4 Results and Discussion 

In order to assess the performance of the developed noise cancellation algorithm, simulated 

FPCG data corresponding to various SNRs were quantitatively evaluated using NF after noise 

cancellation.  Unavailability of the actual out-of-band noise n(n), FHS and MHS data was the main 

reason behind choosing NF as a performance evaluation metric. In this case study, average NF was 

estimated as ratio of variances of d(n) and 𝑥𝑥�(𝑛𝑛). It has to be noted that d(n) and 𝑥𝑥�(𝑛𝑛) were 

segmented into frames of length one second and with 60% overlap between adjacent frames, where 

i and v represent frame index, and number of frames before estimating the average NF as given in 

equation (12). Table 5.2 shows the noise removal consistency of the developed noise cancellation 

algorithm for various SNRs of the simulated FPCG data. Lower value of the NF indicates great 

proportion of noise being removed. 

Table 5.2: Estimated Average Noise Factors for FPCG. 
Standard Deviation of FPCG 

Noise (dB) 
Noise Factor 

(dB) 
73.12 -4.20 
74.76 -3.28 
75.86 -2.41 
76.42 -2.01 
81.81 -0.97 

From Table 5.2, it can be seen that the developed noise cancellation algorithm consistently 

cancels the noise out from the FPCG even under conditions of increasing noise power. Post noise 

cancellation, the estimate 𝑥𝑥�(𝑛𝑛) was subjected to a six level MRA using fifth order Coiflet wavelet.  

The FHS and MHS were extracted as independent sources by performing a hard threshold on MRA 

coefficients, simultaneously retaining details and approximation coefficients of level six (D6 and 
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A6) and reconstructing them individually back into time domain. Figures 5.6.A1, 5.6.A2, 5.6.B1, 

5.6.B2, 5.6.C1 and 5.6.C2 show the noisy signal with noise powers 73.12, 76.42, 81.81 dBs and 

the corresponding FHS and MHS signals obtained after MRA decomposition for six seconds of 

SNR enhanced FPCG, respectively. 

 
Figure 5.6: Noisy FPCG, Separated FHS and Separated MHS Corresponding to Various FPCG 

Noise Powers. 
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From Figures 5.6.A1 – 5.6.C2, it can be observed that, qualitatively the developed 

framework effectively attenuated the out-of-band noises and efficiently resolved the FHS and 

MHS interference from a single channel FPCG.  However, in order to provide additional 

validation, mean Fetal and Maternal Heart Rates (FHR, MHR) along with their standard deviations 

(SD) were computed in beats per minute (bpm) for the analyzed FPCG dataset. Table 5.3 presents 

the results of the estimated FHR and MHR. 

Table 5.3: Estimated FHR and MHR. 
Standard Deviation of FPCG Noise (dB) FHR±SD (bpm) MHR±SD (bpm) 

73.12 143±16 74±4 
74.76 149±25 72±8 
75.86 154±32 71±10 
76.42 150±25 76±20 
81.81 167±36 83±16 

From Table 5.3, it can be seen that the estimated FHR and MHR fall within normal 

range, i.e., 110-210 bpm for FHS and 70-90 bpm for MHS [117]. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 
 

6.1 Conclusions 

Existing critical and emergency care blood flow based data acquisition systems are 

currently limited to only measuring continuous blood pressure. Inability to detect sensitive 

dynamic pressure variations and solve the problem of reducing external acoustic noise are the 

primary limiting factors. In addition, the use of multiple monitoring systems such as 12-lead 

electrocardiogram, capnogram, plethysmograph and Foley catheter present a plethora of other 

challenges including complex and expensive infrastructure, lack of functional interoperability and 

diagnostic precision in low resource settings. To address these challenges, a novel first of its kind, 

catheter multiscope was introduced in this research. The results of the proof of concept and the 

feasibility studies described in the dissertation show that the developed minimally invasive novel 

catheter multiscope can be used to measure critical parameters with clinical accuracy. In particular, 

the catheter multiscope is able to uniquely characterize a physiological phenomenon and 

continuously measure critical parameters such as: heart rate, respiratory rate, systolic pressure and 

diastolic pressure validated using small animal models. In comparison to the existing state-of-the-

art, the developed technology exhibits innovation in terms of complexity of the data acquisition 

system, an efficient signal processing framework and an improved applicability for a low resource 

setting. The sensitive dynamic pressure variations within the blood flow were acquired using a 

data acquisition system that is a composed of a fluid coupled catheter, a fluid to air polymeric  
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membrane and an acoustic waveguide housing a pressure field microphone. Since the acquired 

dynamic pressure is severely affected due to other acoustic interferences present in critical and 

emergency care setting, its signal to noise ratio was improved by developing an efficient spectral 

subtraction based noise reduction algorithm. The performance assessment metrics such as noise 

factor and signal to noise ratio quantitatively validated that the developed algorithm provides a 

better performance compared to other state-of-the-art noise cancellation algorithms.  Then, a 

wavelet based source separation algorithm was developed to separate various acoustic sources 

from a single channel observation. Using the novel source separation algorithm, acoustic heart and 

respiratory pulses were extracted from the noise reduced signal. The framework to process the 

acoustic signals of the novel catheter multiscope can be adapted to other single or multi-channel 

acoustic signals with minor or no modifications. 

It was observed that there were no particular standards to validate the results of critical care 

data acquisition systems. Hence, in this dissertation, a procedure to validate and benchmark the 

performance of critical care data acquisition systems has been developed.  The extracted acoustic 

heart and respiratory pulses were quantitatively validated by showing that the estimated average 

errors for the computed heart and respiratory rates were less than 15%.  In addition, continuous 

blood pressure was derived from the measured total pressure by means of a novel signal processing 

framework. The derived systolic and diastolic pressures were quantitatively and qualitatively 

validated by benchmarking with the gold standard measurements and by establishing an additional 

benchmark with Physionet arterial blood pressure data. The estimated average errors for the 

computed systolic and diastolic pressures were less than 6%. Overall, the feasibility study shows 

that the developed novel catheter multiscope can provide multiple critical parameters like heart 
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rate, respiratory rate, systolic and diastolic pressures with clinical accuracy by measuring a 

physiological process. 

In addition to demonstrating the feasibility of the developed catheter multiscope in critical 

and emergency care monitoring, the diagnostic potential of the developed technology has been 

shown in additional applications including sinus rhythm pattern recognition and fetal monitoring 

through phonocardiography. These application case studies are the byproducts of the catheter 

multiscope, i.e., similar or the same data acquisition system and signal processing framework have 

been utilized. The preliminary results show that it is feasible to measure multiple critical 

parameters from a single physiological phenomenon using the catheter multiscope. The 

methodology implemented in this research can be applied for research, development and 

optimization of other catheter based data acquisition systems for monitoring vital bio-signals. In 

conclusion, there is growing interest for disruptive technology like the catheter multiscope in the 

field of medical devices particularly, in critical and emergency care. It is the ultimate goal of this 

research to establish new frontiers in vital bio-signal monitoring for any critical and emergency 

care under any given low resource settings.  

6.2 Future Research 

From the current feasibility study, it was observed that various challenges with respect to 

the data acquisition system, data analysis and benchmarking have to be addressed in order to 

extract all the bio-signals of interest with fidelity. 

6.2.1 Data Acquisition 

With respect to the data acquisition system, the Pstatic was not measured with precision since 

the computed blood pressure waveform indicated the presence of distortions and resulted in an 

attenuated signal. The acoustic respiratory pulse was attenuated and presented as discontinuities 
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in the Ptotal. In order to address the challenges of the data acquisition system, Pstatic needs to be 

measured with a suitable pressure sensor. The frequency response of the Ptotal measuring sensor 

needs to be specified below 1 Hz to sense changes in the infrasonic sound pressures.   

6.2.1.1 Future Design Optimizations 

Though the pressure field microphone measures the dynamic pressures with high 

sensitivity and precision, it requires the use of a waveguide to effectively acquire the dynamic 

pressure. However, in order to comply with the regulations of FDA, the invasive/minimally 

invasive critical care data acquisition systems are only to be designed for one-time use. For these 

reasons, the use of waveguide and pressure field microphone make the data acquisition system 

expensive. Hence, future generation devices will have to be cost effective and designed for one-

time use.  Figure 6.1 shows the next generation design layout of the catheter multiscope that is 

capable of addressing the existing challenges. 

 

Figure 6.1: Next Generation Design Layout for Catheter Multiscope. 

As shown in Figure 6.1, the existing data acquisition system will be retrofitted using 

retrofits 1 and 2. Retrofit 1 contains a MEMS based static pressure sensing element with a custom 

sensor housing designed to estimate fluid pressure. In addition, retrofit 1 also contains a custom 
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designed Y port, through which saline solution and other drugs can be infused. The Y port also 

enables expansion of the monitoring to other critical parameters such as SPO2 and rapid blood 

analysis.  Retrofit 2 contains a polymeric barrier that is used to provide fluid to air coupling and a 

MEMS microphone is fabricated on the barrier. This design of retrofit 2 eliminates the use of 

waveguide and pressure field microphone. In addition to optimizing the data acquisition system 

through retrofitting, computational fluid dynamics simulations will also be performed in future.  

6.2.2 Data Collection and Signal Processing 

With respect to data analysis, artifacts have not been processed and removed from the data 

and hence before performing any analysis, artifacts need to be attenuated. It should also be noted 

that this study did not consider evaluation metrics like mean squared error and computational 

efficiency in assessing the performance of the noise cancellation algorithms which is proposed for 

future research. Though MRA provided satisfactory bio-signal separation, the decomposition 

coefficients in the scales of interest had to be manually identified in the current study and hence it 

would be interesting to further process the MRA coefficients by an unsupervised clustering 

algorithm like K-means, Gaussian Mixture Models, etc.  Though the acoustic heart pulses were 

extracted from the measured Ptotal without any distortion, it needs to be validated towards 

identification of pathology pertaining to the heart sounds. With respect to benchmarking, in the 

current study, additional modalities like respiratory rate and heart rate were noted prior and post 

data acquisition and hence in order to provide an accurate benchmarking these modalities need to 

be recorded electronically along with the Ptotal measurement. Also, the implemented blood pressure 

computation framework needs additional information from the conventional devices. Regarding 

continuous blood pressure, an accurate benchmark needs to be established in order to provide 

conclusive results and this is currently under study. Overall, the current data acquisition and 
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analysis were validated by acquiring vascular pressure measurements from small animal models 

which needs to be extended to humans. 

6.2.3 Application Case Studies  

6.2.3.1 Sinus Rhythm Pattern Recognition 

Analysis presented in this dissertation evaluated the developed cluster analysis framework 

for the data collected from two different body sites. In order to validate the pattern recognition 

framework, the current case study needs to be implemented for data collected from more than two 

body sites and for various statically robust datasets collected from various animal studies. It should 

be noted that the segmentation accomplished prior feature extraction is a key cluster accuracy 

determining factor. In the current case study, the segmentation length has been chosen empirically 

and for the future study the segmentation needs to be defined based on the clustering objective.  In 

order to improve currently obtained recognition accuracy of 94.37% for the developed framework, 

a multimodal framework has to be developed that includes information from other vital bio-signals 

of the catheter multiscope. Additionally, investigating multimodal features from blood pressure, 

acoustic heart and respiratory pulses may also contribute to the accuracy improvement. It is also 

worth noting that the current case study needs to be applied to various cases of pathological 

arrhythmia. Overall, the current data acquisition and cluster analysis framework was validated by 

acquiring vascular pressure measurements from a Yorkshire pig which needs to be extended to 

humans. The end goal is to be able to reduce the false arrhythmia alarm rates of the critical care 

units. In addition, the framework developed for the acoustic heart pulses of the catheter multiscope 

can also be extended and validated for classification of normal and abnormal heart sounds. 
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6.2.3.2 Fetal Monitoring Through Phonocardiography 

Though the developed spectral subtraction algorithm was able to effectively remove the 

out-of-band noise, the noise factor was seen to be reducing across higher noise power ranges.  

Hence, in order to maintain consistent noise factor throughout all the power ranges of noise, the 

noise estimation algorithm within spectral subtraction will need to be improved in the future.  In 

addition, a comparative analysis has to be performed with multiband spectral subtraction and other 

recent denoising techniques.  In this application, the source separation algorithm was able to 

separate FHS and MHS from the simulated FPCG dataset.  However, the proposed framework is 

currently being extended to a clinically collected FPCG dataset.  Also, as a part of this analysis, 

the feasibility of separating additional vital bio-signals corresponding to the fetus and the mother 

is being assessed.  FHR and MHR were manually computed for this case study and in the future 

this computation should be automated and validated against clinically collected cardiotocographs. 
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APPENDIX A: ADDITIONAL VALIDATION FOR NORMALIZED BLOOD PRESSURE 
 

For additional validation of normalized blood pressure data extracted from the novel 

catheter multiscope, a frequency domain benchmarking was also performed with human blood 

pressure.  The rationale behind establishing comparison between the human and animal blood 

pressure comes from the fact that specific animal models, particularly porcine and human 

physiological data share similar characteristics [119].  Figure A.1(a) shows the normalized 

continuous blood pressure computed from the catheter multiscope’s measurement and Figure 

A.1(b) shows the arterial blood pressure data extracted from the PhysioNet waveform multi-

parameter database [120, 25] over a period of ten seconds. 

 
Figure A.1: Normalized Blood Pressure of Catheter Multiscope and Arterial Blood Pressure 

from the PhysioNet Database. 
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This benchmarking was accomplished by estimating the magnitude squared coherence 

between the blood pressure data derived from recording index 1a and the Physionet arterial blood 

pressure using Welch’s overlapped segment averaging method with 5 second long frames and 75% 

overlap.  Figure A.2 presents the results of estimated magnitude squared coherence. 

 
Figure A.2: Estimated Magnitude Squared Coherence. 

It was observed that the magnitude squared coherence was dominant particularly around 2 

Hz and 7 Hz.  The Region of Interest (ROI) energy was estimated by computing the energy of the 

normalized magnitude squared coherence over 0 – 10 Hz and 10 – 20 Hz frequency bands.  The 

ROI energy indicated that the derived blood pressure and Physionet blood pressure were 

significantly correlated over a frequency band of 0 – 10 Hz.  The additional blood pressure 

validation results presented for the recording index 1a, shown in Figure A.2 is also applicable to 

other recording indices described in Table 3.1.
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